摘要
意图识别和槽填充是自然语言理解的两个基本任务,它们之间互相携带了对方的信息。本文提出了一种基于BERT-CRF的联合识别模型。实验结果表明,该模型在意图识别的准确率和语义槽填充的F1分数方面都有显著的提高。
Intention recognition and slot filling are two basic tasks of natural language understanding.Its carry each other's information.This paper presents a joint recognition model based on BERT-CRF.Experimental results show that the proposed model can improve the accuracy of intention recognition and the F1 score of semantic slot filling.
作者
王明星
WANG Ming-xing(North China University of Technology,Beijing 100144)
出处
《数字技术与应用》
2021年第5期58-60,共3页
Digital Technology & Application
关键词
意图识别
语义槽填充
联合模型
深度学习
Intenion detection
Semantic slot filling
Joint model
Deep learning