期刊文献+

一种基于标题与摘要语义的学术论文推荐方法 被引量:1

An Academic Paper Recommendation Method Based on Title and Abstract Semantics
下载PDF
导出
摘要 本文提出了一种基于标题与摘要语义关系的融合网络模型进行论文推荐。首先,在词级子网络中,探究论文中标题与摘要的语义关系,得到论文的句级特征表示。其次,将词级子网络获取的信息输入到句级融合子网络中,对用户阅读偏好进行建模,最终得到为科研人员推荐的学术论文列表。在CiteULike-a数据集上的实验结果表明,本文所提方法较其他传统推荐方法取得了更好的结果,验证了该方法的有效性。 This paper proposes a fusion network model based on the semantic relationship between title and abstract for paper recommendation. Firstly, in the word level sub network, the semantic relationship between the title and the abstract in the paper is explored, and the sentence level feature representation of the paper is obtained. Secondly, the information obtained from the word level sub network is input into the sentence level fusion sub network to model the user’s reading preference, and finally the list of academic papers recommended for researchers is obtained. The experimental results on Citeulike-a data set show that the, the proposed method achieves better results than other traditional recommendation methods, and verifies the effectiveness of the method.
作者 胡蝶 邓璇 HU Die;DENG Xuan(Hubei University,Wuhan Hubei 430062)
机构地区 湖北大学
出处 《数字技术与应用》 2021年第5期97-99,共3页 Digital Technology & Application
关键词 论文推荐系统 注意力机制 语义分析 长短时神经网络 Paper recommendation system Attention mechanism Semantic analysis Long short time neural network
  • 相关文献

参考文献8

二级参考文献59

  • 1刘玮.电子商务系统中的信息推荐方法研究[J].情报科学,2006,24(2):300-303. 被引量:31
  • 2Pazzani M J, Billsus D. Content-based recommendation systems[M]//Brusilovsky P, Kobsa A, Nejdl W. The A- daptive Web. Berlin, Heidelberg : Springer - Verlag, 2007,4321:325 - 341.
  • 3Melville P, Mooney R J, Nagarajan R. Content-boosted collaborative filtering for improved recommendations [ C ] //Proceeding of the 18th national conference on artificial intelligence. Edmonton: AAAI Press, 2002 : 187 - 192.
  • 4Adomavicius G, Tuzhilin A. Toward the next generation recommender systems:A survey of the state-of-the-art and possible extensions [ J ]. IEEE Trans on Knowledge and Data Engineering,2005,17 ( 6 ) :734 - 749.
  • 5Belkin N, Croft B. Information filtering and information re- trieval [ J ]. Communications of the ACM, 1992,35 ( 12 ) : 29 - 37.
  • 6Shardanand U, Maes P. Social information filtering: Algo- rithms for automating ' Word of Mouth' [C]//Proceedings of the ACM SIGCHI conference on human factors in com- puting systems. Denver:ACM Press, 1995:210 - 217.
  • 7Breese J, Hecherman D, Kadie C. Empirical analysis of predictive algorithms for collaborative filtering [ C ]//Proceedings of the 14th conference on uncertainty in artificial intelligence (UAI' 98 ). San Francisco: Morgan Kauf- mann Publishers, 1998:43 - 52.
  • 8Sarwar B, Konstan J, Riedl J. Incremental singular value decomposition algorithms for highly scalable recommender systems[ C] //Proceedings of the 5th international confer- ence on computer and information science. Dhaka, Ban- gladesh, 2002.
  • 9Koren Y. Factorization meets the neighborhood: A multi- faceted collaborative filtering model [ C ]//Proceedings of the 14th ACM SIGKDD international conference on knowl- edge discovery and data mining. Las Vegas, USA, 2008.
  • 10Su X, Khoshgoftaar T M. Collaborative filtering for multi- class data using belief nets algorithms [ C ]//Proceedings of the 18th IEEE international conference on tools with ar- tificial intelligence. Arlington, USA, 2006.

共引文献167

同被引文献22

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部