摘要
面向一体化应急应战体系能力评估需求,传统基于指标体系构建聚合的评估方法具有指标提取困难、主观性强、海量动态数据难以描述等限制。提出一种数据驱动的体系评估技术框架结构,通过融合知识图谱和事理图谱两类技术,实现体系静态知识和动态知识的全面描述;通过实体、事件、关系等图谱要素数据自动抽取,实现体系框架的高效构建和持续更新;通过提供热点主题发现跟踪和态势评估预测等技术设计,实现可管理、可计算、可解释的一体化应急应战体系能力评估;通过一个有限场景的仿真实验,验证了本技术框架的可行性。
Concerning capabilities evaluation of the integrated war emergency system(IWES),the metrics system-based methods suffer from the limitation of metric acquisition difficulty,biased decision subjectivity,inability of describing massive dynamic data,etc.This paper proposes a new data-driven capabilities evaluation framework,which integrates the knowledge graph and event evolutionary graph to describe the domain static knowledge and dynamic events respectively.By synthesizing the automatic extraction techniques of entities,events,and relations,the framework can be built and updated efficiently.The framework also designs the application techniques of hot topic recognition and tracking,as well as event situation awareness and prediction.These characters enable the framework to solve the problem of IWES capabilities evaluation in a data manageable,computable,and explainable manner.Finally,a small-sized experiment based on simulated data sets is reported to validate the feasibility of the framework.
作者
时伟
刘怀兴
程振宇
顾文冠
SHI Wei;LIU Huaixing;CHENG Zhenyu;GU Wenguan(Center for Assessment and Demonstration Resarch, Academy of Military Sciences, Beijing 100091,China;Naval Staff, Beijing 100091,China;Information Engineering University, Zhengzhou 450001, China)
出处
《信息工程大学学报》
2021年第2期246-252,共7页
Journal of Information Engineering University
基金
科研基金资助项目(JY2019B012)。
关键词
知识图谱
事理图谱
实体抽取
事件抽取
主题发现
概率预测
仿真验证
knowledge graph
event evolutionary graph
entity extraction
event extraction
topic discovery
probability-based prediction
simulation-based experiment