期刊文献+

基于主成分分析的农作物空间分布信息提取 被引量:4

Extraction of Crop Spatial Distribution Information Based on Principal Component Analysis
下载PDF
导出
摘要 针对遥感农作物分类精度低、作物区分不明显的特点,本文提出了一种基于主成分分析的农作物空间分布信息提取方法。通过主成分分析,增强影像的光谱特征,提高样本的可分离性和影像分类精度,满足农作空间分布识别要求。最后以GF-1卫星影像为研究对象进行试验,结果表明,本文提出的方法分类精度可达95%以上,实验结果符合实际情况。 In view of the low precision of remote sensing crop classification and the indistinct distinction between crops,this paper proposes a kind of crop spatial distribution information extraction based on principal component analysis(PCA).Through PCA,the spectral characteristics of the image are enhanced,the separability of the samples is improved,the accuracy of image classification is improved,and the recognition requirements of agricultural spatial distribution are met.In this paper,GF-1 satellite image is taken as the research object to carry out method experiments.The experimental results show that the classification accuracy of the method proposed in this paper can reach more than 95%,and the experimental results are in line with the actual situation.
作者 王众娇 魏茂盛 郭凌峰 王向强 高磊 WANG Zhongjiao;WEI Maosheng;GUO Lingfeng;WANG Xiangqiang;GAO Lei(Harbin Space Star Data System Technology Co.,Ltd.,Harbin 150000,China)
出处 《测绘与空间地理信息》 2021年第6期114-115,119,共3页 Geomatics & Spatial Information Technology
关键词 主成分分析 空间分布 分类 principal component analysis distribution classify
  • 相关文献

参考文献4

二级参考文献65

  • 1刘勇洪,牛铮.基于MODIS遥感数据的宏观土地覆盖特征分类方法与精度分析研究[J].遥感技术与应用,2004,19(4):217-224. 被引量:58
  • 2覃先林,李增元,易浩若.高空间分辨率卫星遥感影像树冠信息提取方法研究[J].遥感技术与应用,2005,20(2):228-232. 被引量:53
  • 3Jha A, Nain A S, Ranjan R. Wheat acreage estimation using remote sensing in tarai region of Uttarakhand[J]. Vegetos, 2013, 26(2): 105-111.
  • 4Dujardin J, Batelaan O, Canters F, et al. Improving surface-subsurface water budgeting using high resolution satellite imagery applied on a brownfield[J]. Sci Total Environ, 2011, 409(4): 800-809.
  • 5Al-Kofahi S, Steele C,Vanleeuwen D, et al. Mapping land cover in urban residential landscapes using very high spatial resolution aerial photographs[J]. Urban for Urban Gree, 2012, 11(3): 291-301.
  • 6Hirschmugl M, Steinegger M, Gallaun H, et al. Mapping forest degradation due to selective logging by means of time series analysis: Case studies in Central Africa[J]. Remote Sens-Basel, 2014, 6(1): 756-775.
  • 7Zhong Y F, Zhao J, Zhang L P. A hybrid object-oriented conditional random field classification framework for high spatial resolution remote sensing imagery[J]. Ieee T Geosci Remote, 2014, 52(11): 7023-7037.
  • 8Kohli D, Warwadekar P, Kerle N, et al. Transferability of object-oriented image analysis methods for slum identification[J]. Remote Sens-Basel, 2013, 5(9): 4209-4228.
  • 9Bouziani M, Goita K, He D C. Rule-based classification of a very high resolution image in an urban environment using multispectral segmentation guided by cartographic data[J]. Ieee T Geosci Remote, 2010, 48(8): 3198-3211.
  • 10Niebergall S, Loew A, Mauser W. Integrative Assessment of informal settlements using VHR remote sensing data: The Delhi case study[J]. Ieee J-Stars, 2008, 1(3): 193-205.

共引文献162

同被引文献93

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部