期刊文献+

基于卷积神经网络的单幅图像三维人脸重建 被引量:4

3D face reconstruction of single image based on CNN
下载PDF
导出
摘要 利用单幅二维图像进行三维人脸重建是图像处理研究领域的热点问题。受深度卷积神经网络(CNN)和三维形变模型(3DMM)的启发,提出一种采用CNN回归3DMM形状和表情参数的方法,进行三维人脸重建。在CNN模型VGG-16的基础上设计一种VGG-BN的改进网络模型,通过在每个卷积层后加入批归一化层,优化网络模型性能;并采用迁移学习方法,将预训练模型引入到VGG-BN网络的训练中。将改进的网络模型在300W-LP数据集上训练,在AFLW2000-3D数据集上测试,并和现有方法进行了对比分析。实验结果表明:改进的网络模型在人脸重建的准确性和泛化性方面都有一定的改善,重建人脸的形状和表情效果较好。 Three-dimensional face reconstruction using a single two-dimensional image is a hot topic in the field of image processing.Inspired by deep convolutional neural network(CNN)and 3 D morphable model(3 DMM),a method of 3 D face reconstruction using convolution neural network to regress the shape and expression parameters of 3 DMM is proposed.Based on the convolution neural network model VGG-16,an improved network model of VGG-BN is designed.By adding batch normalization layer after each convolution layer, the performance of network model is optimized.The pre-training model is introduced into the training of VGG-BN network by transfer learning method.The improved network model is trained on 300 W-LP dataset, tested on AFLW2000-3 D dataset, and compared with existing methods.Experimental results show that the improved network model can improve the accuracy and generalization of face reconstruction, and the effect of face reconstruction is better.
作者 王育坚 李深圳 韩静园 谭卫雄 WANG Yujian;LI Shenzhen;HAN Jingyuan;TAN Weixiong(School of Information,Beijing Union University,Beijing 100101,China)
出处 《传感器与微系统》 CSCD 北大核心 2021年第6期52-56,共5页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61572077)。
关键词 三维人脸重建 三维形变模型(3DMM) 卷积神经网络(CNN) 单幅图像 3D face reconstruction 3D morphable model(3DMM) convolutional neural network(CNN) single image
  • 相关文献

参考文献3

二级参考文献14

  • 1陈绵书,陈贺新,桑爱军.计算机人脸识别技术综述[J].吉林大学学报(信息科学版),2003,21(S1):101-109. 被引量:18
  • 2SCHEENSTRA, RUIFROK A, VELTKAMP R C. A Survey of 3D Face Recognition Methods [J]. Lecture Notes in Computer Science, 2005, 3546: 891-899.
  • 3PARKE F I. Computer Generated Animation of Faces [ C ]//ACM National Conference. New Youk, USA : ACM Press, 1972 : 422 -431.
  • 4PARKE F I. A Parametric Model of Human Faces [D]. Salt Lake City: Computer Science, University of Utah, 1974.
  • 5PIGHIN F, SZELISKI R, SALESIN D H. Modeling and Animation Realistic Faces from Images [ J]. Proceedings International Journal of Computer Vision, 2002, 50(2) : 143-160.
  • 6BLANZ V, VETTER T. Face Recognition Based on Fitting a 3D Morphable Model [J]. Proc of IEEE Trans on Pattern Analysis and Machine Intelligence, 2003, 25 (9) : 1063-1074.
  • 7COOTES T F, TAYLOR C J, COOPER D H, et al. Active Shape Model - Their Training and Application [ J ]. Computer Vision and Image Understanding, 1995, 61(1) : 38-59.
  • 8BRAM VAN GINNEKEN, ALEJANDRO F FRANGI, JOES J STAAL, et al. Active Shape Model Segmentation with Optimal Features [ J ]. IEEE Trans on Medical Image, 2002, 21 (8) : 924-933.
  • 9ANKUR PATEL, WILLLIAM A P SMITH. Driving 3D Morphable Models Using Shading Cues - J]. Pattern Recognition, 2012, 45(5) : 1993-2004.
  • 10GIVENS G, BEVERIDGE J R, DRAPER B A, et al. A Statistical Assessment of Subject Factors in the PCA Recognition of Human Faces [ C ] //Proceedings of Workshop on Statistical Analysis in Computer Vision. New Youk, USA : IEEE Press, 2003 : 96-103.

共引文献12

同被引文献23

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部