期刊文献+

基于YOLOv3和Deep SORT的草原牛跟踪系统 被引量:4

Grassland cattle tracking system based on YOLOv3 and Deep SORT
下载PDF
导出
摘要 设计了一种基于深度学习算法的草原牛跟踪系统。融合YOLOv3目标检测算法与Deep SORT目标跟踪算法实现对草原牛的检测跟踪,结合比例—积分—微分(PID)算法控制云台(PTZ)摄像头稳定跟随草原牛转动。在内蒙古苏尼特左旗牧场进行现场实验测试,实验结果表明:系统运行稳定,对草原牛检测准确率较高,跟踪效果较好,可以实现未检测到草原牛时自动巡航、对多只草原牛自动跟踪、以及指定跟踪单只草原牛的功能。 A grassland cattle tracking system based on deep learning algorithms is designed.The system fuses YOLOv3 target detection algorithm and Deep SORT target tracking algorithm to detect and track grassland cattle, and combines the proportional-integral-differential(PID)algorithm to control the PTZ camera to follow the grassland cattle stably.The system performs field experiments on the Sunit Zuoqi pasture in Inner Mongolia.The experimental results show that the system runs stably with high accuracy in detecting steppe cattle, and has a good tracking effect.It can achieve automatic cruise when no steppe cattle are detected, and multiple steppe automatic cattle tracking, and the function to track a specified single steppe cattle.
作者 李琦 尚绛岚 李宝山 LI Qi;SHANG Jianglan;LI Baoshan(School of Information Eegineering,Inner Mongolia University of Science and Technology,Baotou 014010,China)
出处 《传感器与微系统》 CSCD 北大核心 2021年第6期83-85,88,共4页 Transducer and Microsystem Technologies
基金 内蒙古自然科学基金资助项目(2019MS06021) 内蒙古自治区科技成果转化项目(CGZH2018041) 内蒙古自治区科技重大专项项目(2019ZD025)。
关键词 YOLOv3算法 Deep SORT算法 比例—积分—微分 自动跟踪 YOLOv3 algorithm Deep SORT algorithm PID automatic tracking
  • 相关文献

参考文献8

二级参考文献77

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2徐如海,胡锦平,翁经强,褚晓红,黄少珍.猪采食规律观测[J].养猪,2007(2):18-18. 被引量:6
  • 3Gao C,Zhang T,Li Q.Small infrared target detection using sparse ring representation[J].IEEE Transactions on Aerospace and Electronic Systems Magazine,2012,27(3): 21-30.
  • 4Gao C Q,Meng D Y,Yang Y,et al.Infrared Patch-Image Model for Small Target Detection in a Single Image[J].IEEE Tansactions on Image Processing,2013,22( 12):4996-5009.
  • 5Dong X,Huang X,Zheng Y,et al.Infrared dim and small target dete cting and tracking method inspired by human visual system[J].Infrared Physics and Technology,2014,57:100-109.
  • 6Deng H, Wei Y T, Tong M W.Small target detection based on weighte d self-information map[J].Infrared Physics and Technology,2013,60:197-206.
  • 7Li Y,Li P C,Shen Q.Real-time infrared target tracking based on l1minimization and compressive features[J].Applied Optics,2014,53(28):6518-6526.
  • 8Liu R M,Liu Y H.Infrared target tracking in multiple feature ps eudo-color image with kernel density estimation[J].Infrared Physics and Technology,2012,55: 505-512.
  • 9Li Z Z,Chen J,Gu Y S,et al.Small moving infrared space target tracking algorithm based on probabilistic data association filter[J].Infrared Physics and Technology,2014,63:84-91.
  • 10Liu R M,Li X L,Han L,et al.Track infrared point targets based o n projection coefficient templates and non-linear correlation combined with kalman prediction[J].Infrared Physics an d Technology,2013,57:68-75.

共引文献105

同被引文献34

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部