摘要
为求解模糊作业车间调度问题(FJSSP),提出了一种改进的混沌乌鸦搜索算法(CCSA)。算法采用基于工序的编码,并设计了一种修补方式以使CCSA有效求解FJSSP;为增强算法的邻域搜索能力引入了变异算子;为提高算法的进化能力,提出了基于余弦相似度的多样最优个体集来引导进化,使在增强进化效率的同时保证种群多样性;为进一步提高算法在求解FJSSP时的搜索效率,提出了一种基于机器空闲缩小的搜索方法。最后选取了5个典型实例进行了测试,实验结果验证了所提算法的有效性。
An improved chaotic crow search algorithm(CCSA)is proposed for solving the fuzzy job-shop scheduling problem(FJSSP).The algorithm adopts the process-based coding method, and a solution-correct way is designed to make CCSA solve FJSSP effectively.In order to enhance the neighborhood search ability of the algorithm, the mutation operator is introduced.In order to improve the evolutionary ability of the algorithm, multiple optimal individual set based on the Cosine Similarity is proposed to guide the evolution, which not only enhanced the evolutionary efficiency but also ensures the diversity of the population.In order to further improve the search efficiency of CCSA when solving FJSSP,a search method based on the reduction of machine’s spare time is proposed.Finally, five benchmark problems are selected for testing, and the results verify the effectiveness of the proposed algorithm.
作者
刘凯
黄辉先
赵骥
LIU Kai;HUANG Huixian;ZHAO Ji(College of Information Engineering,Xiangtan University,Xiangtan 411105,China;Tsinghua University,National Computer Integrated Manufacturing Systems Engineering Research Center of Tsinghua University,Beijing 100084,China)
出处
《传感器与微系统》
CSCD
北大核心
2021年第6期110-113,117,共5页
Transducer and Microsystem Technologies
基金
东莞市引进创新科技团队计划资助项目(2018607202007)。
关键词
模糊作业车间调度问题
混沌乌鸦搜索算法
相似性度量
局部最优
fuzzy job-shop scheduling problem(FJSSP)
chaotic crow search algorithm(CCSA)
similarity measurement
local optimum