期刊文献+

深空探测器自主规划技术研究进展 被引量:8

Research Progress of Autonomous Planning Technology for Deep Space Probes
下载PDF
导出
摘要 在深空探测过程中,探测器飞行距离远、所处环境动态多变,传统地面站遥测遥控方式很难满足探测器控制的实时性、鲁棒性和安全性等要求,迫切需要探测器具有自主性,而自主规划技术是实现探测器自主运行的核心技术之一。介绍了自主规划技术发展历程,给出了深空探测器自主规划内涵,分别从自主规划和执行框架、任务规划知识模型、任务规划和重规划、运动规划以及科学观测任务规划六方面进行总结和分析关键技术,并根据技术发展和任务需求,提出了深空探测器自主规划技术发展趋势和重点研究方向。 In the process of deep space exploration,the probe has a long flight distance and is in dynamic environment.Traditional ground station telemetry and remote control methods can hardly meet the requirements of real-time,robustness and safety of the probe control.It is urgent for the probe to have autonomy,and autonomous planning technology is one of the key technologies to realize the autonomous operation of the probe.The article introduces the development of autonomous planning technology and the connotation of autonomous planning for deep space probes,summarizes and analyzes key technologies from the framework of planning and execution,planning model,mission planning,replanning,motion planning and scientific observation mission planning,and proposes the development direction of autonomous planning based on technological development and mission requirements.
作者 徐瑞 李朝玉 朱圣英 王棒 梁子璇 尚海滨 XU Rui;LI Zhaoyu;ZHU Shengying;WANG Bang;LIANG Zixuan;SHANG Haibin(Beijing Institute of Technology,Beijing 100081,China;Key Laboratory of Autonomous Navigation and Control for Deep Space Exploration,Ministry of Industry and Information Technology,Beijing 100081,China)
出处 《深空探测学报(中英文)》 CSCD 北大核心 2021年第2期111-123,共13页 Journal Of Deep Space Exploration
基金 国家重点研发计划资助项目(2019YFA0706500) 国家自然科学基金资助项目(62006019) 国家自然科学基金资助项目(61976020) 国家自然科学基金资助项目(U2037602) 民用航天预研资助项目。
关键词 深空探测 自主规划 任务规划 运动规划 科学观测任务规划 deep space exploration autonomous planning mission planning motion planning scientific observation mission planning
  • 相关文献

参考文献4

二级参考文献106

  • 1Bensana E, Verfaillie G, Agnese J, et al. Exact and approximate methods for the daily management of an Earth observing satellite[C]∥Proceedings of the Symposium on Space Mission Operations and Ground Data Systems. 1996.
  • 2Gabrel V, Vanderpooten D. Enumeration and interactive selection of efficient paths in a multiple criteria graph for scheduling an earth observing satellite[J]. European Journal of Operational Research, 2002, 139(3): 533-542.
  • 3Globus A, Crawford J, Lohn J. A comparison of techniques for scheduling earth observing satellites[C]∥Proceedings of the 16th Conference on Innovative Applications of Artificial Intelligence. 2004.
  • 4Hall N G, Magazine M J. Maximizing the value of a space mission[J]. European Journal of Operation Research, 1994, 78(2): 224-241.
  • 5Vasquez M, Hao J K. Upper bounds for the SPOT 5 daily photograph scheduling problem[J]. Journal of Combinatorial Optimization, 2003, 7(1): 87-103.
  • 6Lin W C, Liao D Y, Liu C Y, et al. Daily imaging scheduling of an earth observation satellite[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 2005, 35(2): 213-223.
  • 7Schetter T, Campbell M, Surka D. Multiple agent-based autonomy for satellite constellations[J]. Artificial Intelligence, 2003, 145(1-2): 147-180.
  • 8Das S, Knights D, Wu C, et al. Distributed intelligent planning and scheduling for enhanced spacecraft autonomy[C]∥Proceedings of the AAAI 2001 Spring Symposium Series. 2001.
  • 9Garey M, Johnson D. Computers and intractability: a guide to the theory of NP-completeness[M]. San Francisco: W. H. Freeman, 1979: 212-214.
  • 10Potter M A, de Jong K A. Cooperative coevolution: an architecture for evolving coadapted subcomponents[J]. Evolutionary Computation, 2000, 8(1): 1-29.

共引文献169

同被引文献76

引证文献8

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部