期刊文献+

具有年龄结构的传染病模型的稳定性分析

Analysis on the Stability of Age-Structured Epidemic Model
下载PDF
导出
摘要 针对具有年龄结构的MSIR传染病模型问题的研究,通过计算得出基本再生数的表达式,证明了当R0<1时,无病平衡点是局部渐近稳定的。 Study the problem of an age-structured MSIR epidemic model and obtain the expression of the basic regeneration number.The result that the disease-free equilibrium is locally asymptotically stable while R0<1,is proved.
作者 豆中丽 DOU Zhongli(Chongqing College of Finance and Economics,401320,Chongqing,PRC)
机构地区 重庆财经学院
出处 《江西科学》 2021年第3期433-435,共3页 Jiangxi Science
基金 重庆市教委科技创新项目(KJQN201902105)。
关键词 年龄结构 基本再生数 稳定性 age-structured basic regeneration number stability
  • 相关文献

参考文献3

二级参考文献12

  • 1李学志,代丽霞.总人口规模变化的年龄结构SEIR流行病模型的稳定性[J].系统科学与数学,2006,26(3):283-300. 被引量:7
  • 2Hoppensteadt F. An age structured epidemic model. J. F. Rranklin Inst., 1974, 197: 325-333.
  • 3Qiu Z P, Li X Z, Martcheva M. Multi-strain persistence induced by host age structure. J. Math. Anal. Appl., 2012, 391: 595-612.
  • 4Inaba H. Threshold and stability results for an age-structured epidemic modeh J. Math. Biol., 1990, 28: 411-434.
  • 5Li M Y, Muldowney J S. Global stability for the SEIR epidemic model in epidemiology. Math. Biosci., 1995, 123: 155--167.
  • 6Magal P, Ruan S G. Center manifolds for semilinear equation with non-dense domain and ap- plication to Hopf bifurcations in age-structure models. Memoirs of the American Math. Society, 2009, 202(951): 1 71.
  • 7Yang J X, Qiu Z P, Li X Z. Global stability of an age-structured cholera model. Math. Biosci. Eng., 2014, 11(3): 641-665.
  • 8Cha Y, Iannelli M, Milner E. Existence and uniqueness of endemic states for the age-structured SIR epidemic model. Math. Biosci., 1998, 150: 177-190.
  • 9Webb G B. Theory of Nonlinear Age-Dependent Population Dynamics. New York and Basel: Marcel Dekker, 1985.
  • 10方彬,李学志.潜伏期具有传染性的年龄结构MSEIS流行病模型的稳定性[J].应用数学学报,2008,31(1):110-125. 被引量:10

共引文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部