期刊文献+

一类笛卡儿乘积图的PM-紧邻性质

PM-compact property of a class of cartesian product graphs
下载PDF
导出
摘要 图G的完美匹配图,记为PM(G),是以G的每个完美匹配作为顶点并且两个顶点相邻当且仅当这两点对应于G中两个完美匹配的对称差恰好是一个圈而得到的图.若PM(G)是完全图,则称G是完美匹配紧邻的,简称G是PM-紧邻的.研究了一类笛卡儿乘积图的PM-紧邻性质,完全刻画在这类笛卡儿乘积图中所有的PM-紧邻图. The perfect matching graph of a graph G,denoted by PM(G),is the graph gotten by letting each perfect matching of G be a vertex of PM(G),and two vertices in PM(G)are adjacent if and only if the symmetric difference of those two perfect matchings of G is a cycle.If PM(G)is a complete graph,then we call G is perfect matching compact,or PM-compact for short.We study PM-compact property of a class of the cartesian product graphs in this paper.All PM-compact graphs in the class of cartesian product graphs are characterized.
作者 张艳 ZHANG Yan(School of Mathematics and Statistics,Minnan Normal University,Zhangzhou,Fujian 363000,China)
出处 《闽南师范大学学报(自然科学版)》 2021年第2期62-67,共6页 Journal of Minnan Normal University:Natural Science
基金 福建省自然科学基金(2020J01795)。
关键词 完美匹配图 PM-紧邻图 笛卡儿乘积图 perfect matching graph PM-compact graph the cartesian product graph
  • 相关文献

参考文献1

二级参考文献8

  • 1Bian, H.P., Zhang, F.J. The graph of perfect matching polytope and an extreme problem. Discrete Mathematics. 309:5017-5023 (2009).
  • 2Bondy, J.A., Murty, U.S.R. Graph Theory. Springer-Verlag, Berlin, 2008.
  • 3Chvtal, V. On certain polytopes associated with graphs. Journal of Combinatorial Theory (B). 18: 138-154 (1975).
  • 4Lovisz, L., Plummer, M.D. Matching Theory. Elsevier Science Publishers, B.V. North Holland, 1986.
  • 5Padberg, M.W., Rao, M.R. The travelling salesman problem and a class of polyhedra of diameter two. Mathematical Programming. 7:32-45 (1974).
  • 6Schrijver, A. CombinatoriM Optimization: Polyhedra and Efficiency. Springer-Verlag, Berlin, 2003 s) (2014).
  • 7Wang, X.M., Shang, W.P., Lin, Y.X. A characterization of claw-free PM-compact cubic Graphs. Discrete Mathematics, Algorithms and Applications, 6(2): 1450025 (5 page.) (2014).
  • 8Naddef, D.J., Pulleyblank, W.R. Hamiltonicity in (0-1)-polytope. Journal of Combinatorial Theory (B), 37:41-52 (1984).

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部