期刊文献+

基于自适应混合高斯的改进三帧差分算法 被引量:6

Improved three-frame difference algorithm based on adaptive mixture Gaussian
下载PDF
导出
摘要 为提高运动目标检测算法的准确性,保证较低的时间复杂度,提出基于自适应混合高斯的改进三帧差分算法。为获取目标内部运动点,采用基于自适应学习率的混合高斯背景建模,以像素点间的匹配次数作为参考量来修正模型的学习速率,提高算法对动态环境的适应性,通过基于边缘提取的三帧差分改进算法对视频图像的目标轮廓进行提取,保证目标信息的完整。实验结果表明,所提算法能够完整提取运动目标,保证目标轮廓的完整,算法的时间复杂度有效降低。 To improve the accuracy of the moving object detection algorithm,ensure lower time complexity,an improved three-frame difference algorithm based on adaptive Gaussian mixture was proposed.To obtain the internal movement points of the target,a Gaussian mixture background modeling based on adaptive learning rate was used,and the number of matching between pixels was used as a reference to modify the model learning to improve the adaptability of the algorithm in the dynamic environment.Through the three-frame difference improvement algorithm based on edge extraction,the target contour of the video image was extracted to ensure the integrity of the target information.Experimental results show that the proposed algorithm can completely extract moving targets and ensure the integrity of the target contour.The time complexity of the algorithm is effectively reduced.
作者 杨嘉琪 韩晓红 YANG Jia-qi;HAN Xiao-hong(College of Data Science,Taiyuan University of Technology,Jinzhong 030600,China)
出处 《计算机工程与设计》 北大核心 2021年第6期1699-1705,共7页 Computer Engineering and Design
基金 山西省自然科学基金项目(201801D121136)。
关键词 运动目标检测 三帧差分 边缘提取 自适应学习率 高斯建模 moving target detection three-frame difference edge extraction adaptive learning rate Gaussian mixture modeling
  • 相关文献

参考文献13

二级参考文献84

  • 1许敬,王晓锋.基于贝叶斯概率的运动目标识别方法[J].南京理工大学学报,2013,37(1):76-80. 被引量:7
  • 2杨阳,杨静宇.基于显著性分割的红外行人检测[J].南京理工大学学报,2013,37(2):251-256. 被引量:13
  • 3黄晓生,黄萍,曹义亲,严浩.一种基于PCP的块稀疏RPCA运动目标检测算法[J].华东交通大学学报,2013,30(5):30-36. 被引量:3
  • 4刘贵喜,邵明礼,刘先红,朱东波.真实场景下视频运动目标自动提取方法[J].光学学报,2006,26(8):1150-1155. 被引量:32
  • 5万缨,韩毅,卢汉清.运动目标检测算法的探讨[J].计算机仿真,2006,23(10):221-226. 被引量:121
  • 6Zhong Y,Jain A K,Dubuisson-Jolly M P.Object tracking using deformable templates[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(5):544-549.
  • 7Wang L,Wang L,Wen M,et al.Background subtraction using incremental subspace learning[C]∥IEEE International Confe-rence on Image Processing,2007(ICIP 2007).IEEE,2007,5:45-48.
  • 8Blanding W R,Wille P K,Bar-Shalom Y.Multiple targets tracking using maximum likelihood probabilistic data association[C]∥IEEE Aerospace Conference Proceedings,2007 IEEE Aerospace Conference Digest.2007:416-445.
  • 9Lei B,Xu L Q.Real-time outdoor video surveillance with robust foreground extraction and object tracking via multi-state transition management[J].Pattern Recognition Letters,2006,27(15):1816-1825.
  • 10Martel-Brisson N,Zaccarin A.Moving cast shadow detectionfrom a Gaussian mixture shadow model[C]∥Proceedings of 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.2005:643-648.

共引文献177

同被引文献114

引证文献6

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部