期刊文献+

基于排序学习的构件检索方法的研究

A component retrieval method based on learning to rank
下载PDF
导出
摘要 将排序学习的方法应用于构件检索的研究中,首先,采用刻面描述的方法对构件进行全面的描述,并通过word2vec模型和权重设定的方法对刻面描述的构件进行特征提取;然后,对构件特征进行潜在语义分析和余弦相似度计算,得到构件训练数据集;最后,通过使用构件训练数据集和构件数据集对经过改进的Plackett-Luce概率排序模型用最大似然估计方法训练模型参数,从而得到一种构件排序模型。将构件排序模型应用到构件检索中开发实现了一个构件检索方法,通过实验验证了此方法的有效性,其查全率、查准率和效率都优于传统的构件检索方法。 This paper applies the method of learning to rank to the research of component retrieval.Firstly,the facet description method is used to describe the components comprehensively,and the features of the facet described components are extracted through the Word2vec model and the weight setting method.Secondly,the component semantics analysis and cosine similarity calculation are performed on the component feature description information to obtain the component training data set.Finally,the component training data set and the component data set are used to train the model parameters of the improved Plackett-Luce probabilistic ranking model through the maximum likelihood estimation method,so as to obtain a component ranking model.The component ranking model is applied to the component retrieval to realize a component retrieval method.Experiments show that the method has better effectiveness,recall,precision and efficiency are better than the traditional component retrieval methods.
作者 陈华烨 汪海涛 姜瑛 陈星 CHEN Hua-ye;WANG Hai-tao;JIANG Ying;CHEN Xing(Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
出处 《计算机工程与科学》 CSCD 北大核心 2021年第6期1006-1013,共8页 Computer Engineering & Science
基金 国家自然科学基金(61462049)。
关键词 排序学习 构件检索 潜在语义分析 最大似然估计 learning to rank component retrieval latent semantic analysis maximum likelihood estimation
  • 相关文献

参考文献4

二级参考文献38

  • 1S Torshen, F Naumann. Approximate tree embedding for querying XML data. ACM SIGIR 2000 Workshop on XML and Information Retrieval, Athen, Greece, 2000
  • 2Dennis Shasha, Jason T L Wang. ATreeGrep: Approximate search in unordered trees. The 14th Int'l Conf on Science and Statistical Database Management, Edinburgh, Scotland, 2002
  • 3D Shasha, J Tsong, L Wang. Exact and approximate algorithm for unordered tree matching. IEEE Trans on Systems, Man and Cybernetics, 1994, 24(4): 668~678
  • 4K Z Zhang, R Statman, D Shasha. On the editing distance between unordered labeled trees. Information Processing Letters,1992, 42(3): 133~139
  • 5Pascal Ferraro, Christophe Godin. An edit distance between quotiented trees. Algorithmic a, 2003, 36(1): 1~39
  • 6R Thorsten. A new measure of the distance between ordered trees and its applications. Department of Computer Science, University of Bonn, Tech Rep. 85166, 1997
  • 7ABILHOA W D, CASTRO L N D. A keyword extraction method from twitter messages represented as graphs [ J]. Applied Mathematics and Computation, 2014, 240(4) : 308 - 325.
  • 8CHEN Y H, LU J L, MENG F T. Finding keywords in blogs: efficient keyword extraction in blog mining via user behaviors [ J]. Expert Systems with Applications, 2014, 41(2):663 -670.
  • 9JEAN-LOUIS L, GAGNON M, CHARTON E. A knowledge-base o-riented approach for automatic keyword extraction [ J]. Computacion y Sistemas, 2013, 17(2) : 187 - 196.
  • 10HABIBI M, POPESCU-BELIS A. Keyword extraction and clustering for document recommendation in conversations [ J]. IEEE/ACM Transactions on Audio Speech and Language Processing, 2015, 23 (4) :746 -759.

共引文献131

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部