摘要
考虑实际系统中某些节点安装谐波量测装置的困难性、经济性以及谐波状态估计的准确性等问题,提出一种两阶段谐波量测点优化配置算法。第一阶段在保证电力系统谐波状态完全可观的前提下,以谐波量测装置数量最少为目标,运用改进二进制粒子群优化算法得到多组可行方案,针对二进制粒子群优化算法易陷于局部最优且收敛速度较慢的不足,结合谐波量测配置规则提出了两个粒子更新机制。第二阶段在第一阶段所得多组可行配置方案基础上,考虑估计精度和经济性确定一组最具有工程监测意义的配置方案。最后,采用IEEE14节点系统和IEEE30节点系统算例对所提方法进行了验证。
Considering the difficulty in installing harmonic measurement devices at some nodes in an actual system,the economy,and the accuracy of harmonic state estimation,a two-stage algorithm for the optimal configuration of harmon⁃ic measurement points is proposed.At the first stage,under the premise of ensuring that the harmonic state of the power system is completely observable,a modified binary particle swarm optimization(MBPSO)algorithm is used to obtain multiple feasible schemes,which aims at minimizing the number of harmonic measurement devices.Considering that the binary PSO algorithm is easy to be local optimal and its convergence speed is slow,two particle update mechanisms are put forward with the combination of harmonic measurement configuration rules.At the second stage,based on the multiple sets of feasible configuration schemes obtained at the first stage,the configuration scheme with the most impor⁃tant significance of engineering monitoring is determined in terms of estimation accuracy and the economy.At last,the proposed algorithm is verified by an IEEE 14-bus system and an IEEE 30-bus system.
作者
何胜
杨斌
俞明
肖园
吕干云
HE Sheng;YANG Bin;YU Ming;XIAO Yuan;Lü Ganyun(State Grid Corporation of China Co.,Ltd,Beijing 102209,China;State Grid Jiangsu Electric Power Co.,Ltd,Nanjing 210024,China;State Grid Nanjing Lishui Power Supply Company,Nanjing 211200,China;School of Electric Power Engineering,Nanjing Institute of Technology,Nanjing 211167,China;Economic and Technological Research Institute,State Grid Jiangxi Electric Power Co.,Ltd,Nanchang 330043,China)
出处
《电力系统及其自动化学报》
CSCD
北大核心
2021年第6期22-27,共6页
Proceedings of the CSU-EPSA
基金
国家自然科学基金资助项目(51577086)
江苏“六大人才高峰”资助项目(2016-XNY027,TD-XNY004)
江苏省高校科研重大资助项目(19KJA510012)
江苏高校“青蓝工程”资助项目。
关键词
谐波量测装置
可观测性
改进二进制粒子群优化算法
经济性
harmonic measurement device
observability
modified binary particle swarm optimization(MBPSO)algo⁃rithm
economy