摘要
智能学业预警是教育大数据、云计算等智能技术应用的热点,许多研究采用数据挖掘、机器学习、深度学习等技术来预测成绩.在线上教学常态化的背景下,智能学业预警和精准干预为下一步混合教学和职业教育的“三教”改革决策提供实证,也是教育大数据的重要研究内容.本研究设计了基于随机森林的预测模型分析教师和学生行为,并评估教师和学生行为中的“强特征”,最终实现针对学业预警中的“强特征”采用干预措施.使用制作的训练数据和验证数据进行实验,结果表明本研究模型训练数据准确率达到96%以上,验证数据准确率达到90%以上,学业预警精度高,同时针对学生行为和教师行为中的“强特征”制定了精准干预措施.
Intelligent study warning is a hot spot in the application of big data of education,cloud computing and other intelligent technologies.Many researches use data-mining,machine learning,deep learning and oth-er technologies to predict performance models.Under the background of online teaching normalization,intelli-gent study warning and precise intervention provide empirical evidence for the next educational reform deci-sionmaking of mixed teaching and vocational education,which is also an important research content of big data.In this study,we design a prediction model based on Random Forest to analyze the behavior of teachers and students,and evaluate the“strong features”of teachers and students,and finally achieve the interven-tion measures for the“strong features”.Using the training data and validation data,the results indicate that the research model is effective;the accuracy of training data is more than 96%;the accuracy of verification data is more than 90%,and the precision of model is high.At the same time,precise intervention measures are formulated for the“strong features”of students’and teachers’behaviors.
作者
张源
ZHANG Yuan(Dean’s Office of Anhui Medical College,Hefei 230601,China)
出处
《湖南工程学院学报(自然科学版)》
2021年第2期64-71,共8页
Journal of Hunan Institute of Engineering(Natural Science Edition)
基金
安徽省教育厅重大线上教学改革研究项目(2020zdxsjg180)
安徽省高校优秀拔尖人才培育项目(gxyq2020111)
安徽医学高等专科学校科研项目(2018jyxm003,2019zrtd02,WJH202004t).
关键词
学业预警
随机森林
强特征
袋外数据
精准干预
人工智能
study warning
random forest
strong features
out-of-bag data
precise intervention
artificial intelligence