期刊文献+

On the Minimal Solutions of Variational Inequalities in Orlicz-Sobolev Spaces

原文传递
导出
摘要 In this paper,the author studies the existence of the minimal nonnegative solutions of some elliptic variational inequalities in Orlicz-Sobolev spaces on bounded or unbounded domains.She gets some comparison results between different solutions as tools to pass to the limit in the problems and to show the existence of the minimal solutions of the variational inequalities on bounded domains or unbounded domains.In both cases,coercive and noncoercive operators are handled.The sufficient and necessary conditions for the existence of the minimal nonnegative solution of the noncoercive variational inequality on bounded domains are established.
作者 Ge DONG
出处 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2021年第3期333-356,共24页 数学年刊(B辑英文版)
基金 supported by the 100 Teachers Database Project of Shanghai University of Medicine and Health Sciences(No.B30200203110084)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部