摘要
手势识别作为人机交互的有效手段,成为当前研究的热点话题.针对动态手势识别存在时空多变性、特征复杂性等问题,本文提出了一种基于三维骨骼信息的动态手势识别方法.动态手势具有时间上的差异性和复杂性,极大地影响了动态手势识别的准确率.因此,本文设计了一种动态手势关键帧提取算法,该算法可以提取动态手势关键部分,用于进一步的特征提取.另外,单独分类器的分类效果存在差异性,本文采用多个分类器同时对手势特征进行分类,充分利用了所提取的特征.同时,本文还提出了一种自适应融合算法,可以根据分类精度有效融合不同分类器,提高最终分类效果.最后,通过实验验证了本文提出的动态手势识别框架和方法的有效性.
As an effective means of human-computer interaction,gesture recognition has become a hot topic in current research.In order to solve the problems of spatio-temporal variability and feature complexity concerning dynamic gestures,we propose a dynamic gesture recognition solution based on 3D skeleton features.The accuracy of dynamic gesture recognition is greatly impaired due to the temporal differences and complexity of dynamic gestures,thus a key frame extraction algorithm is designed to extract key features of dynamic gestures for further feature extraction.To overcome the difference in classification performance between single classifiers,multiple classifiers are used to simultaneously classify and fully exploit gesture features.We also propose an adaptive fusion algorithm to effectively fuse different classifiers according to their classification performances thus improve the final classification accuracy.Finally,experiments are carried out,and results verify the effectiveness of the proposed dynamic gesture recognition approach.
作者
熊鹏文
熊昆
张宇
余斯吉
XIONG Pengwen;XIONG Kun;ZHANG Yu;YU Siji(School of Information Engineering,Nanchang University,Nanchang 330031)
出处
《南京信息工程大学学报(自然科学版)》
CAS
北大核心
2021年第3期291-297,共7页
Journal of Nanjing University of Information Science & Technology(Natural Science Edition)
基金
国家自然科学基金(61903175,61663027)
江西省主要学科学术和技术带头人项目(20204BCJ23006)
住房和城乡建设部2020年科学技术项目(2020-K-009)。
关键词
骨骼信息
动态手势识别
关键帧
多分类器融合
skeleton information
dynamic gesture recognition
key frame
multi-classifier fusion