期刊文献+

Initial and Boundary Value Problem for a System of Balance Laws from Chemotaxis:Global Dynamics and Diffusivity Limit

原文传递
导出
摘要 In this paper,we study long-time dynamics and diffusion limit of large-data solutions to a system of balance laws arising from a chemotaxis model with logarithmic sensitivity and nonlinear production/degradation rate.Utilizing energy methods,we show that under time-dependent Dirichlet boundary conditions,long-time dynamics of solutions are driven by their boundary data,and there is no restriction on the magnitude of initial energy.Moreover,the zero chemical diffusivity limit is established under zero Dirichlet boundary conditions,which has not been observed in previous studies on related models.
出处 《Annals of Applied Mathematics》 2021年第1期61-110,共50页 应用数学年刊(英文版)
基金 partially supported by China Scholarship Council(No.201906150159) partially supported by China Scholarship Council(No.201906150101) National Natural Science Foundation of China(No.11971176,No.11871226) partially supported by Fundamental Research Funds for the Central Universities of China(No.3072020CFT2402) partially supported by Simons Foundation Collaboration Grant for Mathematicians(No.413028)。
  • 相关文献

参考文献1

二级参考文献9

  • 1Othmer H G,Stevens A.Aggregation,blowup,and collapse:the ABC's of taxis in reinforced random walks.SIAM J Appl Math,1997,57:1044-1081.
  • 2Levine H A,Sleeman B D.A system of reaction diffusion equtions arising in the theory of reinforced random walks.SIAM J Appl Math,1997,57:683-730.
  • 3Sleeman B D,Levine H A.Partial differential equations of chemotaxis and angiogenesis.Math Methods Appl Sci,2001,24:405-426.
  • 4Yang Y,Chen H,Liu W A.On existence of global solutions and blow-up to a system of reaction-diffnsion equations modelling chemota.xis.SIAM J Math Anal,2001,33:763-785.
  • 5Hillen T,Potapov A.The one-dimensional chemotaxis model:global existence and asymptotic profile.Math Methods Appl Sci,2004,27:1783-1801.
  • 6Levine H A,Sleeman B D,Hamilton M N.Mathematical modeling of the onset of capillary formation initating angiogenesis.J Math Biol,2001,42:195-238.
  • 7Zhang M,Zhu C -J.Global existence of solutions to a hyperbolic-parabolic system.Proc Amer Math Soc,2007,135(4):1017-1027.
  • 8Kate S.On local and global existence theorems for a nonautonomons differential equtioan in a Banach space.Funkcial Ekvac,1976,19:279-286.
  • 9Nishida T.Nonlinear Hyperbolic Equtions and Related Topics in Fluid Dynamics.Publ Math,1978.

共引文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部