期刊文献+

大缸径天然气发动机几何压缩比与米勒度协同优化

Collaborative Optimization of Geometric Compression Ratio and Miller Degree of Large-Bore Natural Gas Engine
下载PDF
导出
摘要 利用GT-Power建立了某大缸径天然气发动机的一维热力学循环仿真模型,用原机台架试验数据标定,使仿真模型计算准确后,研究了发动机设计参数几何压缩比以及米勒度对发动机性能的影响。以提高发动机热效率和降低排气温度为目标,利用神经网络建模与遗传算法对发动机设计与控制参数进行协同优化。优化结果表明,在保证发动机扭矩输出的条件下,通过对几何压缩比与米勒度的协同优化可以提高指示热效率,降低排气温度,改善发动机性能。 The GT-Power software was used to establish one-dimensional thermodynamic cycle simulation model of natural gas engine with a large bore.The accuracy of simulation model was verified after the calibration based on the engine bench test data.Then the effect of engine geometric compression ratio and Miller degree on engine performance was studied with the model.The neural network modeling and genetic algorithm were used to conduct the collaborative optimization of engine design and control parameters so as to improve the thermal efficiency and reduce the exhaust gas temperature.The results show that it is feasible to increase thermal efficiency,reduce exhaust gas temperature,and improve engine performance by the collaborative optimization of geometric compression ratio and Miller degree without loss of torque output.
作者 曹佳乐 李铁 依平 黄帅 杨润岱 黄雅婷 CAO Jiale;LI Tie;YI Ping;HUANG Shuai;YANG Rundai;HUANG Yating(State Key Laboratory of Ocean Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;Chongqing PUSH Manufacturing Co.,Ltd.,Chongqing 400050,China)
出处 《车用发动机》 北大核心 2021年第3期26-31,共6页 Vehicle Engine
基金 国家自然科学基金重点国际(地区)合作研究项目(52020105009) 上海市国际合作项目(17590711000)。
关键词 天然气发动机 几何压缩比 米勒度 指示热效率 排气温度 性能优化 natural gas engine geometric compression ratio Miller degree indicated thermal efficiency exhaust temperature performance optimization
  • 相关文献

参考文献4

二级参考文献17

  • 1Lecointe B,Monnier G.Downsizing agasoline engine using turbo-charging with direct injection[C].SAE Paper 2003-01-0542.
  • 2Lake T,Stokes J,Murphy R,et al.Turbocharging Concepts for Downsized DI Gasoline Engines[C].SAE Paper 2004-01-0036.
  • 3Zaccardi J,Pagot A,Vangraefschepe F,et al.Optimal Design for a Highly Downsized Gasoline Engine[C].SAE Paper 2009-01-1794.
  • 4Alger T,Gingrich J,Roberts C,et al.Cooled exhaustgas recirculation for fuel economy and emissions improvement in gasoline engines[J].Int.J.Engine Res,2011,12:252-264.
  • 5Li T,Gao Y,Wang J,et al.The Miller cycle effects on improvement of fuel economy in a highly boosted,high compression ratio,direct-injection gasoline engine:EIVC vs.LIVC[J].Energ.Convers.Manag,2014,79:59-65.
  • 6Stan C.Future trends in spark ignition engines[C].SAE Paper 2001-24-0085.
  • 7Deeter W,Daigh H,Wallin O.An Approach for Controlling Vehicle Emissions[C].SAE Paper 680400,1968.
  • 8Schweikert J,Johnson J.A Turbocharged Spark Ignition Engine with Low Exhaust Emissions and Improved Fuel Economy[C].SAE Paper 730633,1973.
  • 9Li T,Wu D,Xu M.Thermodynamic analysis of EGR effects on the first and second law efficiencies of a boosted spark-ignited direct-injection gasoline engine[J].Energ.Convers.Manag.,2013,70:130-138.
  • 10Su J,Xu M,Li T,et al.Combined effects of EGR and a higher compression ratio on thermal efficiency improvement of downsized boosted spark-ignition direction-injection engines[J].Energ.Convers.Manag.,2014,78:65-73.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部