摘要
基于Scopus数据库和SciVal科研评价工具,从学术产出、被引情况、学术影响力等计量指标分析2014至2019年人工智能领域发展状况和研究热点。研究发现:全球人工智能领域关注度和学术产出持续增加,相关研究进入高速发展阶段,其中美国高校和企业均处于领先地位,德国在研究机构方面最具影响力,而中国高校和研究所虽然学术产出全球第一但成果质量和影响力还有待提高,不过中国企业表现突出,已进入世界第一梯队;研究热点主要集中在基础研究和共性关键技术这两个方面,尤其是模型、算法等基础理论的研究在人工智能领域得到持续关注和重视。最后依据研究结果以及中国人工智能发展战略举措,为促进中国人工智能发展提出建议:引导并激励研究人员发表"三高"论文、开展合作共研,以及聚焦基础理论和关键共性技术研究,促进产学研合作及成果转化。
On the basis of Scopus database and SciVal research evaluation tools,this paper analyzes the development and research focus of artificial intelligence field from 2014 to 2019 from academic output,citation,academic influence and other measurement indicators.The research finds that,global attention and academic output have continued to increase,and relevant research has entered a stage of rapid development.Among them,American universities and enterprises are in the leading position,Germany is the most influential in research institutions,while Chinese universities and research institutes are the first in the world in academic output,but the quality and influence of achievements are still to be improved,yet Chinese enterprises have outstanding performance and have entered the world’s first echelon.Besides,The research focus is mainly on two aspects of basic research and common key technologies,especially the basic theory of model,algorithm and so on.Finally,according to the research results and the strategic measures of artificial intelligence development in China,the paper puts forward some suggestions to promote the development of artificial intelligence in China:to guide and encourage researchers to publish"three high"papers,to carry out cooperative research,and to focus on basic theory and key common technologies to promote the cooperation between industry,university and research and the transformation of achievements.
作者
刘龑龙
史冬梅
刘进长
唐莉
王金鹏
Liu Yanlong;Shi Dongmei;Liu Jinchang;Tang Li;Wang Jinpeng(l.High Technology Research and Development Center,Ministry of Science and Technology,Beijing 100044.China;School of International Relations and Public Affairs,Fudan University,Shanghai 200433,China;Zhejiang Lab,Hangzhou 311121,China)
出处
《科技管理研究》
CSSCI
北大核心
2021年第10期38-48,共11页
Science and Technology Management Research
基金
中国博士后科学基金面上项目“基于主题模型及多数据源的前沿技术识别”(2020M670254)。
关键词
人工智能
人工智能研究
学术产出
文献计量
SciVal
artificial intelligence
artificial intelligence research
academic output
bibliometrics
SciVal