期刊文献+

基于图卷积和全局对齐策略的图分类网络

Graph Classification Network Based on Graph Convolutional Network and Globally Aligned Strategy
下载PDF
导出
摘要 受限于图数据拓扑结构的不规则性,以及图结点的无序性和规模多变性,现有图分类网络往往对结点嵌入向量采取简单聚合或排序等方式来构建图级别的表示向量,这会导致特征过度压缩以及特征平移等问题.针对这些问题,提出基于全局对齐策略的图卷积网络,通过构建子图特征近似分布将图表示特征向量做全局对齐,在避免过度压缩和特征平移、有效提高下游分类网络对于特征信息挖掘效率的同时,又利用子图特征的分布信息,进一步学习图数据之间内在的结构相似性,从而提升整体网络对于图分类任务的推理能力.在多个图分类数据集上的实验结果表明,采用全局对齐的图卷积网络相较于其他网络模型有2%~6%左右分类精度的稳定提升,消融实验和超参数敏感性分析实验也进一步证实了全局对齐策略的有效性和鲁棒性. Limited by the irregularity of graph topology,permutation independence of graph nodes and variability of graph node scale,the majority of neural networks designed for graph classification adopts simple aggregation or sort operation to generate graph-level representation,leading to over-compression and translation of features.In order to address such problems,this paper proposes a novel graph convolutional network,called Globally Aligned Graph Convolutional Network(GAGCN),where graph-level representations are globally aligned by constructing a sub-structural approximate distribution.GAGCN can not only avoid over-compression and feature translation,but also utilize sub-structural distribution to further learn the internal structural similarity among graph data,thereby effectively improving the efficiency of information mining for the downstream classification network and the inference ability for graph classification,respectively.Experimental results show that GAGCN achieves superior results and improves 2%~6% average accuracy on a range of graph datasets,compared with several state-of-the-art graph classification algorithms.The ablation study and the hyper-parameter analysis further reflect the effectiveness and robustness of our approach.
作者 薛晖 孙伟祥 XUE Hui;SUN Weixiang(College of Computer Science and Engineering,Southeast University,Nanjing 211189,China;Key Laboratory of Computer Network and Information Integration(Southeast University),Ministry of Education,Nanjing 211189,China)
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2021年第6期96-104,共9页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金面上资助项目(62076062) 国家重点研发计划资助项目(2017YFB1002801)。
关键词 图表示学习 图分类 图神经网络 深度学习 graph representation learning graph classification graph neural network deep learning

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部