期刊文献+

基于深度卷积网络的运动想象脑电信号分类方法 被引量:1

Classification Method of Motor Imagery EEG Signals Based on Deep Convolutional Network
下载PDF
导出
摘要 为了提高多分类运动想象脑电信号的解码精度,以此促进脑机接口系统在生产生活中的应用。采用基于深度卷积网络的LeNet和AlexNet模型分析四分类运动想象脑电特性。将脑电信号通过预处理、数据归一化和数据增强,然后分别输入两个模型中进行分类。通过与现有不同的特征提取和分类方法对比,实验结果表明,在多分类运动想象脑电解码研究领域中,深度卷积网络模型取得的分类效果较好。 In order to accurately extract and classify the EEG features of motor imagination,so as to promote the application of the brain-computer interface system in production and life.The LeNet and AlexNet models based on deep convolutional networks are used to analyze the four-category motor imagery EEG characteristics in this paper.The EEG signals are preprocessed,data normalized and data enhanced,and then input into two models for classification.By comparing with the existing different feature extraction and classification methods,the experimental results show that the deep convolutional network model achieves better classification results in the field of multi-class motor imaging EEG decoding research.
出处 《工业控制计算机》 2021年第6期103-106,共4页 Industrial Control Computer
关键词 脑机接口 运动想象 深度卷积网络 脑电分类 brain-computer interface motor imagination deep convolutional network EEG classification
  • 相关文献

参考文献2

二级参考文献12

  • 1任柯昱,唐丹,尹显东.基于字符结构知识的车牌汉字快速识别技术[J].计算机测量与控制,2005,13(6):592-594. 被引量:16
  • 2贾婧,葛万成,陈康力.基于轮廓结构和统计特征的字符识别研究[J].沈阳师范大学学报(自然科学版),2006,24(1):43-46. 被引量:11
  • 3廉飞宇,付麦霞,张元.基于支持向量机的车辆牌照识别的研究[J].计算机工程与设计,2006,27(21):4033-4035. 被引量:12
  • 4Al-Hmouz R, S Challa. Intelligent Stolen Vehicle Detection using Video Sensing [C]// Proceeding of Information, Decision and Control. Adelaide, Qld., Australia. USA: IEEE, 2007: 302-307.
  • 5LeCun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition [C]//Proc. IEEE, 1998. USA: IEEE, 1998: 2278-2324.
  • 6Steve Lawrence, C Lee Giles, Ah Chung Tsoi, Andrew D Back. Face Recognition: A Convolutional Neural Network Approach [J]. IEEE Trans. on Neural Networks (S1045-9227), 1997, 8(1): 98-113.
  • 7Lauer F, C Y Suen, Bloch G. A trainable featare extractor for handwritten digit recognition [J]. Pattern Recognition (S0031-3203), 2007, 40(6): 1816-1824.
  • 8Tivive, Fok Hing Chi, Bouzerdoum, Abdesselam. An eye feature detector based on convolutional neural network [C]// Proc. 8th Int. Symp. Signal Process. Applic. Sydney, New South Wales, Australia. USA: IEEE, 2005: 90-93.
  • 9Szarvas Mate, Yoshizawa Akira, Yamamoto Munetaka, Ogata Jun. Pedestrian detection with convolutional neural networks [C]//IEEE Intelligent Vehicles Symposium Proceedings. USA: IEEE, 2005: 224-229.
  • 10Y Le Cun, U Muller, J Ben, E Cosatto, B Flepp. Off-road obstacle avoidance through end-to-end learning [M]. Advances in Neural Information Processing Systems. USA: MIT Press, 2005.

共引文献160

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部