期刊文献+

A Fractional Orlicz–Sobolev Poincaré Inequality in John Domains

原文传递
导出
摘要 Let n≥2,β∈(0,n)andΩ■R^(n) be a bounded domain.Support thatφ:[0,∞)→[0,∞)is a Young function which is doubling and satisfies sup x>0∫^(1)_(0)φ(tx)/φ(x)dt/t^(β+1)<∞.If Ω is a John domain,then we show that it supports a(φ^(n/(n-β)),φ)_(β)-Poincaréinequality.Conversely,assume thatΩis simply connected domain when n=2 or a bounded domain which is quasiconformally equivalent to some uniform domain when n≥3.IfΩsupports a((φ^(n/(n-β)),φ)β-Poincaréinequality,then we show that it is a John domain.
作者 Tian LIANG
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2021年第6期854-872,共19页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant No.11871088)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部