摘要
Let p be an odd prime,and let k be a nonzero nature number.Suppose that nonabelian group G is a central extension as follows1→G’→G→Z_(pK)×…×Z_(pK),where G’≌Zpk,andζG/G’is a,direct factor of G/G’.Then G is a central product of an extraspecial pkgroup E andζG.Let|E|=p(2n+1)k and|ζG|=p(m+1)k.Suppose that the exponents of E andζG are pk+l and pk+r,respectively,where 0≤l,r≤k.Let AutG’G be the normal subgroup of Aut G consisting of all elements of Aut G which act trivially on the derived subgroup G’,let AutG/ζG,ζG G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially on the centerζG and let AutG/ζG,ζG/G’G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially onζG/G’.Then(ⅰ)The group extension 1→Aut G’→Aut G→Aut G’→1 is split.(ⅱ)AutG’G/AutG/ζG,ζG G≌G1×G2,where Sp(2n-2,Zpk)■H≤G1≤Sp(2n,Zpk),H is an extraspecial pk-group of order p(2n-1)k and(GL(m-1,Zpk)■Zpk(m-1)■Zpk(m)≤G2≤GL(m,Zpk)■Zpk(m).In particular,G1=Sp(2n-2,Zpk)■H if and only if l=k and r=0;G1=Sp(2n,Zpx)if and only if l≤r;G2=(GL(m-1,Zpk)■Zpk(m-1)■Zpk(m)if and only if r=k;G2=GL(m,Zpk)■Zpk((m))if and only if r=0.(ⅲ)AutG’G/Aut G/ζG,ζG/G’G≌G1×G3,where G1 is defined in(ⅱ);GL(ml,Zpk)■Zpk(m-1)≤G3≤GL(n,Zpk).In particular,G3=GL(m-1,Zpk)■Zpk(m-1)if and only if r=k;G3=GL(m,Zpk)if and only if r=0.(ⅳ)AntG/ζG,ζG/G’G≌AutG/ζG,ζG/G’G■Zpk(m),If m=0,then AntG/ζG,ζG/G’G=Inn G≌Zpk(2n);If m>0,then AntG/ζG,ζG/G’G≌Zpk(2nm)×Zpk-r(2n),and AutG/ζG,ζG G/Inn G≌Zpk((2n(m-1))×Zpk-r(2n).
基金
Supported by NSFC(Grant Nos.11601121,11771129)
Natural Science Foundation of He’nan Province of China(Grant No.162300410066)。