期刊文献+

Automorphisms of a Class of Finite p-groups with a Cyclic Derived Subgroup 被引量:1

原文传递
导出
摘要 Let p be an odd prime,and let k be a nonzero nature number.Suppose that nonabelian group G is a central extension as follows1→G’→G→Z_(pK)×…×Z_(pK),where G’≌Zpk,andζG/G’is a,direct factor of G/G’.Then G is a central product of an extraspecial pkgroup E andζG.Let|E|=p(2n+1)k and|ζG|=p(m+1)k.Suppose that the exponents of E andζG are pk+l and pk+r,respectively,where 0≤l,r≤k.Let AutG’G be the normal subgroup of Aut G consisting of all elements of Aut G which act trivially on the derived subgroup G’,let AutG/ζG,ζG G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially on the centerζG and let AutG/ζG,ζG/G’G be the normal subgroup of Aut G consisting of all central automorphisms of G which also act trivially onζG/G’.Then(ⅰ)The group extension 1→Aut G’→Aut G→Aut G’→1 is split.(ⅱ)AutG’G/AutG/ζG,ζG G≌G1×G2,where Sp(2n-2,Zpk)■H≤G1≤Sp(2n,Zpk),H is an extraspecial pk-group of order p(2n-1)k and(GL(m-1,Zpk)■Zpk(m-1)■Zpk(m)≤G2≤GL(m,Zpk)■Zpk(m).In particular,G1=Sp(2n-2,Zpk)■H if and only if l=k and r=0;G1=Sp(2n,Zpx)if and only if l≤r;G2=(GL(m-1,Zpk)■Zpk(m-1)■Zpk(m)if and only if r=k;G2=GL(m,Zpk)■Zpk((m))if and only if r=0.(ⅲ)AutG’G/Aut G/ζG,ζG/G’G≌G1×G3,where G1 is defined in(ⅱ);GL(ml,Zpk)■Zpk(m-1)≤G3≤GL(n,Zpk).In particular,G3=GL(m-1,Zpk)■Zpk(m-1)if and only if r=k;G3=GL(m,Zpk)if and only if r=0.(ⅳ)AntG/ζG,ζG/G’G≌AutG/ζG,ζG/G’G■Zpk(m),If m=0,then AntG/ζG,ζG/G’G=Inn G≌Zpk(2n);If m>0,then AntG/ζG,ζG/G’G≌Zpk(2nm)×Zpk-r(2n),and AutG/ζG,ζG G/Inn G≌Zpk((2n(m-1))×Zpk-r(2n).
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2021年第6期926-940,共15页 数学学报(英文版)
基金 Supported by NSFC(Grant Nos.11601121,11771129) Natural Science Foundation of He’nan Province of China(Grant No.162300410066)。
  • 相关文献

参考文献3

二级参考文献17

  • 1Robinson D J S. A Course in the Theory of Groups, 2nd ed. New York: Springer-Verlag, 1996.
  • 2Corenstein D. Finite Groups. New York: Harper and Row, 1968.
  • 3Huppert B. Endliche Gruppen. Berlin: Springer-Verlag, 1967.
  • 4Winter D. The automorphism group of an extraspecial p-group. Rocky Mountain J Math, 1972, 2:159-168.
  • 5Dietz J. Automorphisms of p-groups given as cyclic-by-elementary abelian central extensions. J Algebra, 2001, 242: 417-432.
  • 6] Robinson D J S. A course in the theory of groups [M]. 2nd edition. New York: Springer Verlag, 1996.
  • 7Gorenstein D. Finite groups [M]. New York: Harper and Row, 1968.
  • 8Huppert B. Endliche gruppen [M]. Berlin: Springer-Verlag, 1967.
  • 9Winter D. The automorphism group of an extraspecial p-group [J]. Rocky Mountain J Math, 1972, 2:159-168.
  • 10Dietz J. Automorphisms of p-group given as cyclic-by-elementary Abelian central extensions [J]. J Algebra, 2001, 242:417-432.

共引文献9

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部