期刊文献+

车载深冷高压储供氢过程预测和影响因素研究 被引量:4

Study on Prediction and Influencing Factors of Cryogenic Compressed Hydrogen Storage and Supply Process
原文传递
导出
摘要 针对应用深冷高压储氢技术的车载系统,为补充现有研究中缺乏的描述系统实时运行状态的方法,提出利用储氢密度确定工况的预测模型。基于丰田Mirai氢燃料电池车型建立动力学部分的模型。电堆功率和氢气流量的相对误差分别不超过7%和1.3%。基于Refprop物性软件建立热力学部分的模型。储氢密度的相对误差不超过1%,从而验证储供氢过程预测模型的精度。此外,还研究储氢容器的初始温度和压力工况对汽车续驶里程和容器休眠期的影响。结果表明,35 MPa下,容器初温由40 K变为70 K,车辆的续航里程减少约18%。同时,增加容器初压可以延长续航里程,但在35 MPa左右的高压时,增压的效果很不明显。而初温70 K、初压5~35 MPa的常见工况范围内,行驶过程中容器压力变化很大,易发生疲劳破坏。为达到固定的休眠期,对漏热量更大的储罐,加注后需实现更低的初温来满足使用需求。 For on-board system using cryogenic compressed hydrogen storage technology,a prediction model using hydrogen storage density to determine working conditions is proposed to supplement the lack of existing research methods to describe the consecutive operating status of the system.Establish the kinetics section of the model based on the parameter of Toyota Mirai hydrogen fuel cell vehicle. In this part,the relative error of stack power and hydrogen flow rate are less than 7% and 1.3%,respectively. Establish the thermodynamic section of the model based on the Refprop physical property software.In this part,the relative error of the hydrogen density of the model is less than 1%,thus verifying the accuracy of the prediction model for the hydrogen storage and supply process In addition,explore the effects of the initial temperature and pressure conditions of the hydrogen storage vessel on the driving mileage of the vehicle and the dormancy of the vessel. The results show that under 35 MPa,the initial temperature of the vessel changes from 40 K to 70 K,and the driving mileage of the vehicle is reduced by about 18%. Meanwhile,increasing the initial pressure of the vessel can extend the driving mileage,but at a high pressure of about 35 MPa,the effect of pressurization is not obvious.In the common working condition range of initial temperature of 70 K and initial pressure of 5-35 MPa,the pressure of the vessel changes greatly during driving and fatigue damage is likely to occur.Finally,in order to achieve a fixed dormancy,for storage vessel with greater heat leakage,a lower initial temperature must be achieved after filling to meet the use requirements.
作者 刘雨农 徐展 倪中华 魏蔚 严岩 LIU Yunong;XU Zhan;NI Zhonghua;WEI Wei;YAN Yan(Southeast University,School of Mechanical Engineering,Nanjing 211189;Hydrogen Cloud New Energy Research Institute Co.,Ltd.,Zhangjiagang 215600)
出处 《机械工程学报》 EI CAS CSCD 北大核心 2021年第6期52-59,共8页 Journal of Mechanical Engineering
基金 国家自然科学基金(51905093) 江苏省基础研究计划(自然科学基金)(BK20180392)资助项目。
关键词 密度计量 储氧 低温压力容器 燃料电池汽车 预测模型 hydrogen storage cryogenic pressure vessel fuel cell vehicle density measurement predictive model
  • 相关文献

参考文献4

二级参考文献59

  • 1贾林,邵震宇.燃料电池的应用与发展[J].煤气与热力,2005,25(4):73-76. 被引量:17
  • 2高大威,金振华,卢青春.基于Matlab的燃料电池汽车动力系统仿真[J].系统仿真学报,2005,17(8):1899-1901. 被引量:19
  • 3凯利·西姆斯·加拉格尔 ,曾爱平 .能源技术跨越的限制——来自中国汽车工业的证据[J].国外理论动态,2005(8):37-40. 被引量:5
  • 4Jorgensen S W. Hydrogen storage tanks for vehicles: Recent progress and current status [ J ]. Current Opinion in Solid State and Materials Science, 2011, (15) : 39- 43.
  • 5Zheng J Y, Liu X X, Xu P, et al. Development of high pressure gaseous hydrogen storage technologies [ J ]. International Journal of Hydrogen Energy, 2012, 37 ( 1 ) : 1048-1057.
  • 6Smith E M. Slush hydrogen for aerospace applications I J]. International Journal of Hydrogen Energy, 1989, 14(3) : 201-213.
  • 7Babac G. Two-dimensional thermal analysis of liquid hydrogen tank insulation [ J ]. International Journal of Hydrogen Energy, 2009, 34(3): 6357-6363.
  • 8Lindquist C R, Niendorf L R. Experimental performance of model liquid-hydrogen space tankage with compressible superinsulation [ J ]. Society of Automotive Engineers, 1962, 89(2): 398-403.
  • 9Perkins P J, Colaluca M A, Smith L S. Preliminary test results on compressed multilayer insulation system for liquid-hydrogen-fueled rocket [ J ]. Advances in Cryogenic Engineering, 1963, 9(2) : 38-45.
  • 10Petitpas G, Aceves S M, Gupta N. Vehicle refueling with liquid hydrogen thermal compression [ J ]. International Journal of Hydrogen Energy, 2012, 37 ( 15 ) : 11448-11457.

共引文献28

同被引文献20

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部