期刊文献+

基于复杂网络提取和支持向量机模型分类的服装领型研究 被引量:4

Research on clothing collar types based on complex network extraction and support vector machine classification
下载PDF
导出
摘要 为解决服装打版中款式自动搜索的问题,以服装衣领款式的结构特征为背景,以服装圆领型图像为例,先通过构建复杂网络对其进行复杂网络特征的描述与提取,然后采用支持向量机的模型实现8种衣领类型图像的分类。实验结果表明:样本整体的平均分类准确率为98%,各类别的平均分类准确率均达到96%以上,其中,圆领的平均分类准确率为100%;在原样本图像库中加入一定程度椒盐噪声和高斯噪声后,样本整体的分类准确率在80%上下浮动,表明支持向量机模型分类的方法适用于含有一定程度噪声的图像识别。因而,本文基于复杂网络提取和支持向量机模型分类的服装领型研究的提取和分类准确率高,且分类结果相对稳定。 In order to achieve automatic style search in clothing pattern-making,this research took the structural features of clothing collar styles as working object,using clothing round-neck images as an example.The paper described and extracted complex network features by constructing a complex network,and the support vector machine model was used to classify images of 8 types of collars.The experimental results show that the average classification accuracy of the samples as a whole is 98%,and the average classification accuracy of each category is above 96%.Among them,the average classification accuracy rate for the round collar samples is 100%.At the same time,in order to evaluate the anti-noise performance of the feature extraction algorithm,after adding a certain degree of salt and pepper noise and Gaussian noise to the image of the original sample library,the overall classification accuracy of the sample fluctuates around 80%,indicating that the support vector machine classification method is suitable for image recognition with a certain degree of noise.To conclude,the extraction and classification accuracy of clothing collar research based on complex network extraction and support vector machine classification is high,and the classification results are relatively stable.
作者 徐增波 张玲 张艳红 陈桂清 XU Zengbo;ZHANG Ling;ZHANG Yanhong;CHEN Guiqing(College of Fashion, Shanghai University of Engineering Science, Shanghai 201600, China)
出处 《纺织学报》 EI CAS CSCD 北大核心 2021年第6期146-152,共7页 Journal of Textile Research
基金 上海市科学技术委员会科技创新行动计划资助项目(18030501400)。
关键词 复杂网络 特征提取 领型分类 支持向量机 服装设计 complex network feature extraction collar type classification support vector machine model clothing design
  • 相关文献

参考文献6

二级参考文献44

  • 1曹茂永,孙农亮,郁道银.用于模式识别的极半径不变矩[J].计算机学报,2004,27(6):860-864. 被引量:16
  • 2张旭东,钱玮,高隽,方廷健.基于稀疏贝叶斯分类器的汽车车型识别[J].小型微型计算机系统,2005,26(10):1839-1841. 被引量:6
  • 3王文,芮国胜,王晓东,邢福成.图像多尺度统计模型综述[J].中国图象图形学报,2007,12(6):961-969. 被引量:4
  • 4冷雪飞,刘建业,熊智.基于分支特征点的导航用实时图像匹配算法[J].自动化学报,2007,33(7):678-682. 被引量:33
  • 5Zhu S C,Yuille A L FORMS:a flexible object recognition and modeling system[J] .International Journal on Computer Vision,1996,20(3):187-212.[DOI:10.1007/BF00208719].
  • 6Siddiqi K,Shkoufandeh A,Dickinson S,et al.Shock graphs and shape matching[J] .International Journal on Computer Vision,1999,35(1):13-32.[DOI:10.1023/A:1008102926703].
  • 7Bai X,Latecki L J.Path similarity skeleton graph matching[J] .IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(7):1282-1292.[DOI:10.1109/TPAMI.2007.70769].
  • 8Bai X,Latecki L J,Liu W Y.Skeleton pruning by contour partitioning with discrete curve evolution[J] .IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29 (3):449-462.[DOI:10.1109/TPAMI.2007.59].
  • 9Bartolini I,Ciaccia P,Patella M.Accurate retrieval of shapes using phase of Fourier descriptors and time warping distance[J] .IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(1):142-147.[DOI:10.1109/TPAMI.2005.21].
  • 10Belong Ie S,Puzhicha J,Malik J.Shape matching and object recognition using shape contexts[J] .IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(4):509-522.[DOI:10.1109/34.993558].

共引文献39

同被引文献51

引证文献4

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部