期刊文献+

二次样本筛选的高光谱图像分类研究

College of Information and Communication Engineering Harbin Engineering University
下载PDF
导出
摘要 主动学习能够在有标记样本较少的分类任务中得到较好的分类结果,其中熵值装袋算法最为常用,其利用熵值来衡量样本的不确定性,但熵值并不能完全地代表样本的不确定度。针对这一问题,本文提出二次样本筛选的分类算法,通过超像素分割进行边缘区域样本筛选,选择出不确定度较高的样本。利用熵值装袋算法对区域筛选样本进行二次筛选,选择信息量较高的样本。实验表明,该方法可以得到更理想的分类效果。 Active learning can get better classification results in the classification task with fewer labeled samples,and entropy bagging algorithm is the most commonly used.It uses entropy to measure the uncertainty of samples,but entropy can not completely represent the uncertainty of samples.In order to solve this problem,this paper proposes a classification algorithm of secondary sample selection,which selects the samples with high uncertainty by super-pixel segmentation.The entropy bagging algorithm is used to screen the samples selected in the previous step for the second time,and the samples with higher information content are selected.The experiments show that this method can obtain better classification effect.
作者 崔颖 王铃秀 李文山 CUI Ying;WANG Lingxiu;LI Wenshan(School of Information and Communication Engineering Harbin Engineering University,Harbin 150001,China;Key Laboratory of Advanced Marine Communication and Information Technology,Ministry of Industry and Information Technology,Harbin 150001,China)
出处 《应用科技》 CAS 2021年第3期7-11,共5页 Applied Science and Technology
基金 中央高校基金科研业务费专项资金项目(3072021CF0805) 黑龙江省自然科学基金项目(LH2020F021) 国家自然科学基金项目(62071084).
关键词 高光谱图像 图像分类 超像素分割 主动学习 区域筛选 信息熵筛选 样本选择 熵值装袋 hyperspectral images image classification super-pixel segmentation active learning regional screening information entropy screening sample selection entropy bagging
  • 相关文献

参考文献4

二级参考文献26

  • 1王平,廖明夫.滚动轴承故障诊断的自适应共振解调技术[J].航空动力学报,2005,20(4):606-612. 被引量:57
  • 2刘金朝,丁夏完,王成国.自适应共振解调法及其在滚动轴承故障诊断中的应用[J].振动与冲击,2007,26(1):38-41. 被引量:25
  • 3Settles B. Active Learning Literature Survey, Computer Science Technical Report 1648, University of Wisconsin- Madison, USA, 2009. 3-4.
  • 4Dasgupta S. Coarse sample complexity bounds for active learning. Advances in Neural Information Processing Sys- tems. Cambridge: The MIT Press, 2006. 235-242.
  • 5Tong S, Chang E. Support vector machine active learning for image retrieval. In: Proceedings of the 9th ACM Inter- national Conference on Multimedia. New York, USA: ACM, 2001. 107-118.
  • 6Tong S, Koller D. Support vector machine active learning with applications to text classification. The Journal of Ma- chine Learning Research, 2002, 2:45-66.
  • 7Seung H S, Opper M, Sompolinsky H. Query by commit- tee. In: Proceedings of the 5th Annual Workshop on Com- putational Learning Theory. New York, USA: ACM, 1992. 287-294.
  • 8Dagan I, Engelson S P. Committee-based sampling for train- ing probabilistic classifiers. In: Proceedings of the 12th International Conference on Machine Learning. California, USA: Morgan Kaufmann, 1995. 150-157.
  • 9Hoi S C H, Jin R, Lyu M R. Batch mode active learning with applications to text categorization and image retrieval. IEEE Transactions on Knowledge and Data Engineering, 2009, 21(9): 1233-1248.
  • 10Joshi A J, Porikli F, Papanikolopoulos N. Multi-class ac- tive learning for image classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog- nition. Miami, USA: IEEE, 2009. 2372-2379.

共引文献81

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部