期刊文献+

基于MSER和NSST算法的大视场图像拼接技术 被引量:2

Large Field of View Image Mosaic Technology Based on MSER and NSST Algorithm
下载PDF
导出
摘要 为了实现多幅连续图像的快速、准确、完整地拼接,使用MSER算法快速、精确地检测图像的特征点,通过预先确定重叠范围,减少无效特征点的提取。利用非下采样剪切波变换(Non-Subsampled Shearlet Transform,NSST)进行图像融合,保证了融合效果。实验证明,该算法是一种快速有效、具有良好鲁棒性及融合效果的大视场高分辨率图像拼接方法。 In order to realize the fast,accurate and complete mosaic of multiple continuous images,this paper uses MSER algorithm to detect the feature points of the image quickly and accurately,and reduces the extraction of invalid feature points by determining the overlapping range in advance;and uses Non-Subsampled Shearlet Transform(NSST)for image fusion to ensure the fusion effect.The experimental results show that the algorithm is a fast and effective image mosaic method with good robustness and fusion effect.
作者 庞丽东 潘维东 林博文 PANG Lidong;PAN Weidong;LIN Bowen(School of Architectural Engineering,Jinggangshan University,Ji’an 343009;School of Mechanical and Electrical Engineering,Jinggangshan University,Ji’an 343009)
出处 《现代制造技术与装备》 2021年第5期4-5,共2页 Modern Manufacturing Technology and Equipment
基金 2018年度江西省文化艺术科学规划项目“大幅面文物数字化保护关键技术研究”(YG2018168)。
关键词 MSER 非下采样剪切波变换(NSST) 大视场 图像拼接 MSER Non-Subsampled Shearlet Transform(NSST) large field of view image mosaic
  • 相关文献

参考文献4

二级参考文献51

  • 1严大勤,孙鑫.一种基于区域匹配的图像拼接算法[J].仪器仪表学报,2006,27(z1):749-750. 被引量:13
  • 2汪松,王俊平,万国挺,王乐.基于SIFT算法的图像匹配方法[J].吉林大学学报(工学版),2013,43(S1):279-282. 被引量:5
  • 3SHAHABA, SHAFAITF, DENGEI. A. ICDAR 2011 robust reading competition challenge 2: reading text in scene images[C] // Proceeding of International Confer-ence on Document Analysis and Recognition. Beijing: IEEE. 2011:1491 - 1496.
  • 4KARATZAS D, SHAFAIT F, UCHIDA S, et al. 1C DAR 2013 robust reading competition [C] // Proceeding of International Conference on Document Analysis and Recognition. Washington: IEEE, 2013: 1484- 1493.
  • 5YE Q, DOERMANN D. Text detection and recognition in imagery: a survey [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37 ( 7 ): 1480 - 1500.
  • 6('HEN X, YUILLE A. Detecting and reading text in natural scenes [C] // Proceeding of IEEE Conference on Computer Vision and Pattern Recognition. Washington: IEEE, 2004:366 - 373.
  • 7WANG K, BABENKO B, BELONGIE S. End-to-end scene text recognition [C] // Proceeding of International Conference on Computer Vision. Barcelona: IEEE, 2011:1457 -1464.
  • 8MISHRA A, ALAHARI K, JAWAHAR C. Top down and bottom-up cues for scene text recognition [C] // Pro- ceeding of 1EEE Conference on Computer Vision and Pattern Recognition. Providence: IEEE, 2012: 2687- 2694.
  • 9JADERBERG M, VEDAI.D] A, ZISSERMAN A. Deep features for text spotting [C] // Proceeding of European Conference on Computer Vision. Zurich: Springer, 2014: 512-528.
  • 10EPSHTEIN B, OFEK E, WEXLER Y. Detecting text in natural scenes with stroke width transform [C] // Proceeding of IEEE Conference on Computer Vision and Pattern Recognition. San Francisco., IEEE, 2010: 2963 - 2970.

共引文献111

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部