期刊文献+

基于神经网络的IC芯片图形缺陷检测技术研究 被引量:3

Integrated Circuit Chip Defect Detection Technical Research Based on Convolutional Neural Network
下载PDF
导出
摘要 基于卷积神经网络的IC芯片图形缺陷检测方法,针对具有缺陷特征的图形图像样本集进行机器深度学习训练,可实现对IC芯片图形中如断线、起泡、腐蚀、划痕、裂纹、污染、崩边等图形缺陷的识别和区分。实验证明,这种方法可用于集成电路芯片的图形缺陷测试。 Based on the Convolutional Neural Network(CNN),the graphic defect detection method of IC chip can realize the identification and discrimination of graphic defects such as broken lines,blisters,corrosion,scratches,cracks,pollution and edge breakage in IC chip graphics by carrying out machine deep learning training for the graphic image sample sets with defect characteristics.The experiment results show that CNN can be applied to the graphic defect testing of IC chips.
作者 魏鹏 WEI Peng(The 11th Research Institute of CETC,Beijing 100015,China)
出处 《电子工业专用设备》 2021年第3期35-41,共7页 Equipment for Electronic Products Manufacturing
关键词 芯片测试 图形缺陷检测 卷积神经网络 图形缺陷样本 机器学习 Chip testing Graphic defect detection Convolutional neural network Graphic defect sample Machine learning
  • 相关文献

参考文献5

二级参考文献122

共引文献966

同被引文献51

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部