摘要
Single nucleotide polymorphism(SNP)armays are a powerful genotyping tool used in genetic research and genomic breeding programs.Japanese flounder(Paralichthys olivaceus)is an economically-important aquaculture flatfish in many countries.However,the lack of high-efficient genotyping tools has impeded the genomic breeding programs for Japanese flounder.We developed a 50K Japanese flounder SNP array,"Yuxin No.1,"and report its utility in genomic selection(GS)for disease resistance to bacterial pathogens.We screened more than 42,.2 million SNPs from the whole-genome resequencing data of 1099 individuals and selected 48697 SNPs that were evenly distributed across the genome to anchor the array with Affymetrix Axiom genotyping technology.Evaluation of the array performance with 168 fishs howed that 74.7%of the loci were successfully genotyped with high call rates(>98%)and that the poly-morphic SNPs had good cluster separations.More than 85%of the SNPs were concordant with SNPs obtained from the whole-genome resequencing data.To validate"Yuxin No.1"for GS,the arrayed geno-typing data of 27 individuals from a candidate population and 931 individuals from a reference popula-tion were used to calculate the genomic estimated breeding values(GEBVs)for disease resistance toEdwardsiella tarda.There was a 21.2%relative increase in the accuracy of GEBV using the weighted geno-mic best linear unpiased prediction(wGBLUJP),compared to traditional pedigree-based best linear unbi-ased prediction(ABLUP),suggesting good performance of the'Yuxin No.1"SNP array for GS.In summary,we developed the"Yuxin No.1"50K SNP array,which provides a useful platform for high-quality geno-typing that may be beneficial to the genomic selective breeding of Japanese flounder.