期刊文献+

机械振动干扰下人体目标识别技术研究 被引量:2

Research of human target recognition technology under mechanical vibration interference
下载PDF
导出
摘要 目的:探索在大型工程机械作业振动干扰下,基于集合经验模态分解(ensemble empirical mode decomposition,EEMD)的熵识别方法用于超宽带(ultra-wideband,UWB)生物雷达识别压埋人体的可行性。方法:使用中心频率为500 MHz的UWB生物雷达采集装载机怠速、挖掘挥铲和移动3种常规作业的振动信号,并分析振动信号的时频特性。对雷达回波信号矩阵中的慢时间信号进行EEMD,分析本征模态函数能量分布复杂度的熵值,根据熵特征及探测区域凹口宽度识别人体目标。分别在室外自由空间和穿墙条件下进行机械振动干扰下的人体目标探测实验以验证该方法。结果:作业机械和人体目标的EEMD熵值明显低于其他区域的熵值,机械振动信号的熵谱图凹口宽度大于人体目标的熵谱图凹口宽度,可据此分别识别作业机械和人体。结论:该方法在一定程度上提升了机械作业振动干扰下人体目标的识别效率,为复杂条件下UWB生物雷达探测人体目标提供了有意义的借鉴。 Objective To explore the feasibility of the ensemble empirical mode decomposition(EEMD)entropy recognition method to identify buried people by ultra-wideband(UWB)bio-radar under the interference of construction mechanical vibration.Methods A UWB bio-radar with a center frequency of 500 MHz was used to acquire vibration signals of the loader during three conventional operations:idling,digging and shovel swinging as well as moving,and to investigate the time-frequency characteristics of the vibration signals.The EEMD of the slow time signals in the radar echo signal matrix was carried out to analyze the entropy value of the energy distribution complexity of the eigenmode function,and human targets were identified based on the entropy characteristics and the notch width of the detection area.Experiments on human target detection under mechanical vibration interference were carried out in outdoor free space and through-wall conditions respectively to validate the method proposed.Results The EEMD entropy values of the operating machine and human targets were significantly lower than those of the other regions,and the notch width of the entropy spectra of the mechanical vibration signals was greater than that of the human targets,whereby the operating machine and the human body could be identified separately.Conclusion The method proposed enhances to some extent the identification efficiency of human targets under mechanical vibration interference,and provides references for human target detection by UWB bio-radar under complex conditions.[Chinese Medical Equipment Journal,2021,42(6):21-25,31]
作者 王昭昳 王健琪 张杨 史刚 张自启 于霄 马洋洋 许兆坤 白思源 薛慧君 WANG Zhao-yi;WANG Jian-qi;ZHANG Yang;SHI Gang;ZHANG Zi-qi;YU Xiao;MA Yang-yang;XU Zhao-kun;BAI Si-yuan;XUE Hui-jun(School of Biomedical Engineering,Air Force Military Medical University,Xi'an 710032,China;Medical Service Department,the 942nd Hospital of Joint Logistics Support Force,Yinchuan 750001,China)
出处 《医疗卫生装备》 CAS 2021年第6期21-25,31,共6页 Chinese Medical Equipment Journal
基金 陕西省自然科学基金项目(2020JQ-443) 陕西省重点研发计划项目(2018SF-170)。
关键词 UWB生物雷达 机械振动干扰 人体目标探测 集合经验模态分解 UWB bio-radar mechanical vibration interference human target detection ensemble empirical mode decomposition entropy
  • 相关文献

参考文献3

二级参考文献21

  • 1李志农,吕亚平,范涛,冷传广.基于经验模态分解的机械故障欠定盲源分离方法[J].航空动力学报,2009,24(8):1886-1892. 被引量:18
  • 2王艳,马弘舸,曹学军,冯仕云,陈冀,赵刚,谢苏隆.墙体对微波脉冲的衰减特性[J].强激光与粒子束,2005,17(8):1277-1280. 被引量:14
  • 3Antoni J. Blind separation of vibration components : principles and demonstrations [ J 1- Mechanical Systems and Signal Processing, 2005, 19(6) : 1166 - 1180.
  • 4He Q B, Su S, Du R X. Separating mixed muhi-component signal with an application in mechanical watch movement [ J ]. Digital Signal Processing, 2008, 18(6) : 1013 - 1028.
  • 5Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the hilbert spectrum for nonlinear and non- stationary time series analysis [ C ]. Proceedings of the Royal Society of London, A, 1998, 454 : 903 - 995.
  • 6Wu Z H, Huang N E. Ensemble empirical mode decomposition: a noise assisted data analysis method [ J ]. Advances in Adaptive Data Analysis, 2009, 1 (1) : 1 -41.
  • 7Mijovic B, De Vos M, Gligorijevic I, et al. Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis [ J ]. IEEE Transactions on Biomedical Engineering, 2010, 57(9) : 2188 -2196.
  • 8t,ao H, Woo W L, IJlay 3 3. 3ingle-channel source separation using EMD-subband variable regularized sparse features [ J ]. IEEE Transactions on Audio, Speech, and Language Processing, 2011, 19(4): 961-976.
  • 9Belouchrani A, Amin M G. Blind source separation based on time-frequency signal representations [ J ]. IEEE Transactions on Signal Processing, 1998, 46(11) : 2888 -2897.
  • 10Zhang Y M, Amin M G. Blind separation of nonstationary sources based on spatial time-frequency distributions [ J ]. Eurasip Journal on Applied Signal Processing, 2006,2006: 1 -13.

共引文献6

同被引文献39

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部