期刊文献+

基于深度学习的资源投入问题算法 被引量:2

Deep learning algorithm for resource investment problem
下载PDF
导出
摘要 针对资源投入调度问题,提出了基于实时调度状态的调度优先级规则智能决策机制,构造了嵌合人工神经网络的双层迭代循环搜索算法。算法上层为启发式资源搜索框架,下层为基于实时调度状态的调度优先级规则智能决策算法。下层算法通过双隐层BP神经网络离线学习,获得调度状态与调度优先级规则的映射关系,并在实时调度过程中的每一阶段,根据当前调度数据,智能决策调度优先级规则,并指导作业调度进行。最后,通过标准算例库PSPLIB进行对比实验,验证了所设计算法的有效性。 An intelligent decision-making scheme of scheduling priority rules based on real-time scheduling state was presented for resource and job scheduling of resource investment problem,and a double-layer iterative cyclic search algorithm based on artificial neural network was proposed.The upper stage of the algorithm was a heuristic resource search framework,and the lower stage was an intelligent decision-making algorithm of scheduling priority rules based on real-time scheduling status.The lower stage of algorithm obtained the mapping relationship between scheduling status and scheduling priority rules through off-line learning of double hidden layer BP neural network.The scheduling priority rules were decided intelligently at each stage of real-time scheduling process,which guided job scheduling according to current scheduling data.The effectiveness of the designed algorithm was verified by comparison with other literature algorithm through experiments with PSPLIB.
作者 陆志强 任逸飞 许则鑫 LU Zhiqiang;REN Yifei;XU Zexin(School of Mechanical Engineering, Tongji University, Shanghai 201804, China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2021年第6期1558-1568,共11页 Computer Integrated Manufacturing Systems
基金 国家自然科学基金资助项目(61473211,71171130)。
关键词 深度学习 双层迭代循环搜索 资源投入问题 启发式规则 调度 deep learning double-layer iterative cyclic search resource investment problem heuristic priority rule scheduling
  • 相关文献

参考文献6

二级参考文献60

  • 1熊禾根,李建军,孔建益,杨金堂,蒋国璋.考虑工序相关性的动态Job shop调度问题启发式算法[J].机械工程学报,2006,42(8):50-55. 被引量:33
  • 2刑文训,谢金星.现代优化计算方法[M].北京:清华大学出版社,2001.
  • 3Johnson S M. Optimal two and three-stage production schedules with setup times included[J] . Naval Research Logistics, 1954, 1(1):61-68.
  • 4郑大钟, 赵千川. 离散事件动态系统[M] . 北京:清华大学出版社, 1999.
  • 5Manne A S. On the Job-Shop scheduling problem[J] . Operations Research, 1960, 8(2):219-223.
  • 6Van Hulle M M. A goal programming network for mixed integer linear programming:a case study for the Job-Shop scheduling problem[J] . International Journal of Neural Networks, 1991, 2(3):201-209.
  • 7Balas E. Machine scheduling via disjunctive graphs:an implicit enumeration algorithm[J] . Operations Research, 1969, 17(6):941-957.
  • 8McMahon G B, Florian M. On scheduling with ready times and due dates to minimize maximum lateness[J] . Operations Research, 1975, 23(3):475-482.
  • 9Cheng Runwei, Gen M, Tsujimura Y. A tutorial survey of Job-Shop scheduling problems using genetic algorithms, part Ⅱ:hybrid genetic search strategies[J] . Computers and Industrial Engineering, 1999, 37(2):343-364.
  • 10Xiong Hegen, Fan Huali, Li Gongfa. Genetic algorithm-based hybrid methods for a flexible single-operation serial-batch scheduling problem with mold constraints[J] . Sensors and Transducers, 2013, 155(8):232-241.

共引文献63

同被引文献20

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部