期刊文献+

一类具有状态脉冲控制的鱼类收获模型 被引量:3

A Fish Harvesting Model with State Impulse Control
下载PDF
导出
摘要 考虑了一类具有状态脉冲控制的鱼类收获模型。采用线性近似方程以及李雅普诺夫函数法,得出正平衡点是全局渐近稳定的,利用脉冲微分方程理论获得阶1周期存在的条件,其存在的阶1周期解轨道是渐近稳定的。结果表明:在鱼类种群开发过程中,根据水中鱼类密度大小,定期对鱼类种群投放以及收获,实施脉冲状态反馈控制,既不影响鱼类种群的发展,又可对鱼类种群实施分段收获管理,为渔业生产提供一定的理论参考依据。 In order to obtain a fish harvesting model with state impulse control, the linear approximation equation and Lyapunov function method are used to analyze the global asymptotic stability of the positive equilibrium point.And the impulsive differential equation theory is used to obtain the conditions for the existence of order 1 period and it is asymptotically stable.The results show that: during fish population development, adopting impulse state feedback control while stocking and harvesting fish regularly according to fish density in the water does not affect the development of fish population, but drives the development and management of fish population.This study provides a certain theoretical reference for fishery production.
作者 陈武大仁 刘琼 马艺铭 CHENG Wudaren;LIU Qiong;MA Yiming(School of Mathematics and Information Science,Guangxi University,Nanning 530004,China;College of Science,Beibu Gulf University,Qinzhou 535011,China)
出处 《北部湾大学学报》 2020年第11期14-19,共6页 Journal of BeiBu Gulf University
基金 广西自然科学基金面上项目:半连续动力系统理论之于红树林害虫治理的研究(2016GXNSFAA380102)。
关键词 单种群 状态脉冲 阶1周期解 收获 全局渐近稳定 single species state impulse order 1 periodic solution harvesting global asymptotic stability
  • 相关文献

参考文献10

二级参考文献52

  • 1黄立壮,刘琼.一类害虫治理的数学模型研究[J].数学的实践与认识,2020,0(3):217-224. 被引量:4
  • 2鲁红英,王克.具周期系数的单种群模型及其最优捕获策略[J].数学物理学报(A辑),2005,25(6):926-932. 被引量:9
  • 3Clark C W. Mathematical Bioeconomics: the Optimal Management of Renewable Resources [M]. New York:John Wiley & Sons, 1976.
  • 4Clark C W. Bioeconomic Modeling and Resource Management [C]//Levin S A, Hallam T G, Grose L J eds. Applied Mathematical Ecology, New York : Springer-Verlag, 1989.
  • 5Clark C W. Mathematical Bioeconomics: the Optimal Management of Renewable Resources [M]. New York:John Wiley & Sons, 1990.
  • 6GohB S. Managenment and Analysis of Biological Populations[M]. Amsterlan:Elsevier Scientific Publishing Company, 1980.
  • 7Bonotto E M. Flows of Characteristic in Impulsive Semidynamical Systems [J]. J. Math Anal App1,2007 ,332 :81-96.
  • 8Bonotto E M. LaSalle' s Theorems in Impulsive Semidynamical Systems[J]. Cadernos de Matem Atica,2008,9:157-168.
  • 9Bonotto E M, Federson M. Limit Sets and the Poincar6-Bendixson Theorem in Impulsive Semidynamical Systems [J]. J Differential Equations ,2008,244:2334-2349.
  • 10Bonotto E M, Federson M. Poisson Stability for Impulsive Semidynamical Systems [J]. Nonlinear Analysis,2009,71 : 148-6156.

共引文献82

同被引文献18

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部