期刊文献+

基于多维度匹配的知识库问答实体链接

Question Answering Entity Linking Based on Multi Dimension Matching
下载PDF
导出
摘要 目前知识库问答的实体链接主要存在如下困难:问句实体名拼写不规范;知识库中存在大量缺乏区分特征的相似实体;问句缺乏上下文。为了解决上述问题,提出一种多维度匹配的实体链接方法,分别对文本、统计与实体属性维度逐步进行匹配实体候选集。其中,文本维度设置多级阈值,从知识库筛选出合理大小的实体候选集;统计维度根据实体热度得分,对实体候选集进行重排序;实体属性维度利用基于Transformer的关系预测模型对问句中实体关系进行预测,根据实体关系匹配出最终链接的实体。该方法在SimpleQuestions数据集上的准确度达到85.46%,较现有模型提升3.8%。 At present,the entity linking of the knowledge base question answering mainly has the following difficulties:the spelling of the entity nameof the question is not standardized;there are a large number of similar entities in the knowledge base that lack distinguishing features;thequestion lacks context.In order to solve the above problems,a multi-dimensional matching entity linking method is proposed,which gradu-ally matches the entity candidate set for the text,statistics and entity attribute dimensions.Among them,the text dimension sets multi-levelthresholds to filter out a reasonable size entity candidate set from the knowledge base.The statistic dimension reorders the entity candidateset according to the entity hot score.The entity attribute dimension uses the relationship prediction model which based on Transformer topredict the entity relationship in the question,and matches the final linked entity according to the entity relationship.The accuracy of thismethod on the SimpleQuestions dataset reaches 85.46%,which is a 3.8%improvement over the SOTA model.
作者 张森 张攀 ZHANG Sen;ZHANG Pan(College of Computer Science,Sichuan University,Chengdu 610065;National Key Laboratory of Fundamental Science on Synthetic Vision,Sichuan University,Chengdu 610065)
出处 《现代计算机》 2021年第12期8-13,18,共7页 Modern Computer
基金 四川省科技计划项目(重点研发项目)(No.2020YFG0327、2020YFG0306)。
关键词 知识库问答 实体对齐 多维度匹配 TRANSFORMER SimpleQuestions Knowledge Base Question Answering Entity Linking Multi-Dimensional Matching Transformer SimpleQuestions
  • 相关文献

参考文献3

二级参考文献41

  • 1Hachey B, Radford W, Nothman J, Honnibal M, Curran JR. Evaluating entity linking with Wikipedia. Artificial Intelligence, 2013,194:130-150.
  • 2Rau LF. Extracting company names from text. In: Proc. of the 7th IEEE Conf. on Artificial Intelligence Application. IEEE Press, 1991.29-32. [doi: 10.1109/caia.1991.120841].
  • 3Shen W, Wang JY, Luo P, Wang M. Linden: Linking named entities with knowledge base via semantic knowledge. In: Proc. of the 21st Int'l Conf. on World Wide Web. ACM Press, 2012.449-458. [doi: 10.1145/2187836.2187898].
  • 4Milne D, Witten IH. Learning to link with Wikipedia. In: Proc. of the 17th ACM Conf. on Information and Knowledge Management. ACM Press, 2008. 509-518. [doi: 10.1145/1458082.1458150].
  • 5Bunescu RC, Pasca M. Using encyclopedic knowledge for named entity disambiguation. In: Proc. of the 7th Conf. of the European Chapter of the Association for Computational Linguistics. ACM Press, 2006.9-16.
  • 6Milosavljevic M, Delort JY, Hachey B, Arunasalam B, Radford W, Curran JR. Automating financial surveillance. In: Proc. of the User Centric Media. Berlin, Heidelberg: Springer-Verlag, 2010 305-311. [doi: 10.1007/978-3-642-12630-7_38].
  • 7Zheng J, Mao YH. Word sense tagging method based. Journal of Tsinghua University (Sci. & Tech.), 2001,41(3):117-120 (in Chinese with English abstract).
  • 8Guo Y, Che W, Liu T, Li S. A graph-based method for entity linking. In: Proc. of the 5th Int'l Joint Conf. on Natural Language Processing. 2011. 1010-1018.
  • 9Bekkerman R, McCallum A. Disarnbiguating Web appearances of people in a social network. In: Proc. of the 14th int'l Conf. on World Wide Web. ACM Press, 2005.463-470. [doi: 10.1145/1060745.1060813].
  • 10Cueerzan S. Large-Scale named entity disambiguation based on Wikipedia data. In: Proc. of the 2007 Joint Conf. on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. 2007. 708-716.

共引文献49

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部