摘要
针对Tiny YOLOv3模型检测精度低的问题,提出一种将分割信息引入深度卷积神经网络结构中的方法。模型训练期间,将目标真实的位置信息加入网络层中,并手动激活这些目标区域,激励的大小随着训练的进行逐渐减小直至降为零。测试结果表明,在VOC2007数据集上,改进后的Tiny YOLOv3模型的平均准确率提升至58.9%,并且在检测速度上与原模型保持一致,满足实时检测的需要。
Aiming at the problem of low detection accuracy of Tiny YOLOv3 model,a method to introduce segmentation information into deep convolutional neural network structure is proposed.During the model training,the real position information of the target is added to the network layer,and these target areas are manually activated.The size of the excitation gradually decreases as the training proceeds until it drops to zero.The test results show that on the VOC2007 data set,the average accuracy of the improved Tiny YOLOv3 model is increased to 58.9%,and the detection speed is consistent with the original model to meet the needs of real-time detection.
作者
余晗青
杨贞
殷志坚
YU Han-qing;YANG Zhen;YIN Zhi-jian(School of Communication and Electronics,Jiangxi Science and Technology Normal University,Nanchang 330000,China)
出处
《计算机科学》
CSCD
北大核心
2021年第S01期118-121,共4页
Computer Science
基金
国家自然科学基金(61866016)
江西科技师范大学青年拔尖项目(2018QNBJRC002)
江西省教育厅一般项目(GJJ190587)
江西省自然科学基金面上项目(20202BABL202014)
甲骨文信息处理教育部重点实验室开放课题(OIP2019E008)。