摘要
眼是人心理活动和思想在外观上的重要表现形式,文中通过使用高速图像采集系统跟踪飞行员的眼动轨迹来分析其心理行为,以研究飞行员在训练过程中的注意力情况。随着低功耗嵌入式设备、高速5G网络的逐渐成熟,已逐步进入"万物互联"新时代,基于此,提出采用边缘计算设备评估飞行训练效果的解决方案。该方案介绍了一种基于边缘计算架构的实时眼动跟踪系统,采用高速CMOS图像传感器采集眼部图像,提出了一种基于MobileNet的轻量级网络结构快速定位瞳孔位置,然后利用NVIDIA Jetson Nano板卡实现在连续视频图像中定位瞳孔并计算出注视点的功能,以获得眼动视觉焦点轨迹。实验结果表明,该边缘计算系统构成简单,且能满足实时眼动跟踪的要求,为实现实时心理行为分析提供了一种新的有效方法,给改进飞行训练效果提供了重要参考依据。
Eye is an important manifestation of human psychological activities and thoughts in appearance.This paper analyzes the psychological behavior of pilots by using high-speed image acquisition system to track their eye movements,to study the attention of pilots during training.With the gradual maturity of low-power embedded devices and high-speed 5 G networks,it has gradually entered a new era of"Internet of Everything".Based on this,this paper proposes a solution to use edge computing devices to evaluate flight training effects.This paper introduces a real-time eye-tracking system based on edge computing architecture,which uses high-speed CMOS image sensors to capture eye images,and proposes a lightweight network structure based on MobileNet to quickly locate the pupil position,and then uses the NVIDIA Jetson Nano board to achieve the function of locating pupil coordinates in continuous video images and calculating the gaze point,to obtain the eye movement visual focus track.The experimental results show that the edge computing system is simple in structure and can meet the requirements of real-time eye tracking.It provides a new and effective method for real-time psychological behavior analysis and provides a reference for improving the effect of flight training.
作者
钱基德
熊仁和
王乾垒
杜冬
王在俊
钱基业
QIAN Ji-de;XIONG Ren-he;WANG Qian-lei;DU Dong;WANG Zai-jun;QIAN Ji-ye(Civil Aviation Flight University of China,Guanghan,Sichuan 618307,China;Key Laboratory of Flight Technology and Flight Safety,CAAC,Guanghan,Sichuan 618307,China;State Grid Chongqing Electric Power Research Institute,Chongqing 400000,China)
出处
《计算机科学》
CSCD
北大核心
2021年第S01期603-607,612,共6页
Computer Science
基金
中国民用航空飞行学院面上项目(J2021-113,J2018-58)
国家自然科学基金民航联合基金(U2033213)
重庆市技术创新与应用发展专项重点项目(cstc2019jscx-mbdxX0027)
2019民航局教育类项目(27)
大学生创新创业实践项目(S202010624016)。
关键词
边缘计算
飞行训练
注意力分配
眼动跟踪
深度学习
Edge computing
Flight training
Attention distribution
Eye-tracking
Deep learning