期刊文献+

基于振铃约束的全变差正则化图像去模糊算法 被引量:1

Image deblurring based on ringing constraint with total variation regularization
下载PDF
导出
摘要 当前去模糊方法只利用图像单一的稀疏特性作为先验信息,忽略了伪边缘(如振铃瑕疵)对模糊核估计的影响,导致其去模糊性能不佳。本文充分利用复杂结构图像的先验信息,设计了振铃约束下的全变差正则化图像去模糊算法。首先,利用多分辨率图像金字塔策略建立多层图像模型,通过对比模糊图像和潜在清晰图像来获得振铃先验信息。其次,将振铃正则约束项融入全变差方法,构建多正则项去模糊模型,然后利用变量分离法将去模糊模型转化为多函数优化问题。最后,利用一阶原始对偶算法,根据低分辨率到高分辨率的顺序,对模糊核和原始图像完成计算,获取重构目标。实验结果表明:较当前图像去模糊技术而言,所提算法具备更为理性的去模糊效果,所复原的图像呈现出更高的峰值信噪比和结构相似度,可以更好地保持图像边缘与纹理信息。 The current defuzzy method which only uses the sparse feature of the image as the prior information has poor defuzzy performance induced by ignoring the effect of false edges(such as ring defects)on the point spread function estimation.A regularized image deblurring algorithm with total variation under the constraint of ringing is designed based on the prior information of the complex structure image.Firstly,the multi-resolution image pyramid strategy is adopted to build a multi-layer image model,and the prior information of ringing is obtained by comparing the blurred image with the potentially clear image.Secondly,the ringing regularization constraint term is integrated into the total variation method to build a multi-regularization deblurring model,and then the variable separation method is utilized to transform the deblurring model into a multi-function optimization problem.Finally,the firstorder original-dual algorithm is employed to solve the Point Spread Function(PSF)and clear image in the order from low resolution to high resolution.Experimental results show that compared with the current image deblurring technology,the proposed algorithm has a more rational deblurring effect,and the recovered image shows higher peak signal-to-noise ratio and structure similarity,which can better preserve the image edge and texture information.
作者 杨竹青 谢宏 YANG Zhuqing;XIE Hong(College of Internet of Things Engineering,Jiangsu Vocational College of Information Technology,Wuxi Jiangsu 214153,China;School of Information Engineering,Shanghai Maritime University,Shanghai 200135,China)
出处 《太赫兹科学与电子信息学报》 2021年第3期490-496,共7页 Journal of Terahertz Science and Electronic Information Technology
基金 国家自然科学基金面上项目资助项目(41971335,51978144) 上海市科学技术委员会资助项目(14441900300) 江苏省自然科学基金资助项目(BK20131097) 江苏省高水平骨干专业建设项目资助项目(苏教高[2017]17号)。
关键词 图像去模糊 全变差正则化 振铃先验 图像金字塔策略 一阶原始对偶算法 image deblurring total variation regularization ringing prior image pyramid strategy first-order original-dual algorithm
  • 相关文献

参考文献8

二级参考文献46

  • 1CHELLAPPA R, FAIN A. Markov random fields: theory and applications [M]. US: Academic Press, 1993.
  • 2BIOUCAS-DIAS J M. Bayesian wavelet-based image deconvolution: a GEM algorithm exploiting a class of heavy-tailed priors [J]. IEEE transaction on image processing, 2006, 15(4) : 937- 951.
  • 3RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms [J]. Physica D-nonlinear phenomen, 1992, 60(1) : 259-268.
  • 4BECK A, TEBOULLE M. A fast iterative shrinkage-thresholding algorithm for linear inverse problem [J]. SIAM journal on imaging sciences, 2009, 2( 1 ) : 183-202.
  • 5OLIVEIRA J P, BIOUCAS-DIAS J M, FIGUEIREDO M A T. Adaptive total variation image deblurring: a majorization minimization approach [J]. Signal processing, 2009, 89(9): 1683- 1693.
  • 6MEYER Y. Oscillating pattern in image processing and nonlinear evolution equations [R]. Boston: American Mathematical Society, 2005.
  • 7AUJOL J F, AUBERT G, BLANC-FERAUD L, et al. Image decomposition application to SAR image [C]// Proceedings of 2003 4th International Conference on Scale Space. Isle of Skye : Springer Berlin Heidelberg, 2003 : 297-312.
  • 8EKELAND I, TEMAM R. Analyse convexe and problems variationnels [M]. 2nd ed. French: Dunod, 1986.
  • 9ZUO Wangmeng, MENG Deyu, ZHANG Lei, et al. A generalized iterated shrinkage algorithm for non-convex sparse coding [C]// Proceedings of 2013 International Conference on Computer Vision. Sydney: IEEE, 2013: 217-224.
  • 10GILLES J, OSHER S. Bregman implementation of Meyer's Gnorm for cartoon + texture decomposition [R]. [S.l.]: UCLA CAM Report, 2001.

共引文献25

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部