摘要
针对分布式车间调度问题,提出了改进区块遗传算法(modified block-genetic algorithm,MBGA)。用NEH和随机性两种方式得到高质量的初始解,然后进行统计分析,选出精英染色体,建立工件−车间分配矩阵和工件−机器排序矩阵,挖掘联系紧密的基因链组成区块。构建基于区块的人工染色体,并进行基因重组,提高解的质量和多样性。通过算例与其他知名算法进行比较,结果表明该算法优于其他算法,并具有较好的稳定性和准确性。
To solve distributed-job-shop scheduling problems,in this paper,we propose a modified block-genetic algorithm(MBGA).First,we initialize the solutions by combining NEH and random assignments.Then,by statistical analysis,we select an elite chromosome to establish a job-factory distribution matrix and job-machine sorting matrix to mine the block’s closely linked gene chain.Block-based artificial chromosomes are constructed and recombined to improve the quality and diversity of the solutions.The experimental results show that the performance of the proposed MBGA algorithm is superior to that of other well-known algorithms with respect to its stability and accuracy.
作者
裴小兵
孙志卫
PEI Xiaobing;SUN Zhiwei(School of Management,Tianjin University of Technology,Tianjin 300384,China)
出处
《智能系统学报》
CSCD
北大核心
2021年第2期303-312,共10页
CAAI Transactions on Intelligent Systems
基金
国家创新方法工作专项(2017M010800).
关键词
区块
协同效应
人工染色体
分布式车间调度问题
遗传算法
基因重组
概率矩阵
组合优化
block
synergistic effect
artificial chromosomes
distributed job shop scheduling problem
genetic algorithm
gene recombination
probability matrix
combinatorial optimization