期刊文献+

基于神经网络和混沌特征选择的短期负荷预测方法 被引量:3

Short-term Load Forecasting Based on Neural Algorithm and Chaotic Feature Selection
下载PDF
导出
摘要 在激烈竞争的电力市场中,短期负荷预测(Short-term Load Forecasting, STLF)是电力系统高效运行的主要研究热点。针对具有高度波动性非线性信号的电力负载,提出了一种基于神经网络和混沌智能特征选择的预测方法,通过选择最佳候选输入集作为特征参数,将其作为预测输入数据。预测引擎采用一种多层感知层,具有差分进化的学习算法。输入通过的候选者进行相关性分析。对电力市场实际数据进行测试,并与其他STLF技术进行对比,结果表明该方法具有较高的准确度,可在不同电力系统中推广应用。 In the deregulated competition environment of power market, short-term load forecasting(STLF) is a main research point of efficient operation of power system. In view of the power load with highly fluctuating nonlinear signals, a prediction method based on neural network and chaotic intelligent feature selection is proposed in this paper, and the feature selection method is also proposed by selecting the best candidate input set. It is used as the input data for prediction. Candidates enter the correlation between the measured value and the target value by using correlation analysis. The prediction engine is a multi-layer perception layer(MLP) NN, which has the learning algorithm of mixed LM and differential evolution. Finally, it is tested in the electricity market and compared with some latest STLF technologies.
作者 袁保平 徐毅 夏轶炜 朱学珍 吴文涛 周飞 YUAN Baoping;XU Yi;XIA Yiwei;ZHU Xuezhen;WU Wentao;ZHOU Fei(Xiuning Power Supply Company,State Grid Anhui Electric Power Company,Huangshan 245400,China)
出处 《微型电脑应用》 2021年第3期87-90,共4页 Microcomputer Applications
关键词 短期负荷预测 非线性信号 神经网络 混沌特征 short-term load forecasting nonlinear signal neural network chaotic characteristics
  • 相关文献

参考文献11

二级参考文献78

共引文献701

同被引文献57

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部