摘要
研究不确定Delta算子切换系统的二次稳定性问题,其子系统矩阵表示为顶点矩阵的线性凸组合。基于δ域的Lyapunov稳定性理论,在不要求子系统稳定的情况下,找到一族非负标量和一个公共的正定矩阵,使Delta算子切换系统在状态依赖的切换律下是二次稳定的,切换律由公共的正定矩阵给出。数值算例检验了方法的有效性。
The problem of quadratic stabilizability of Delta operator switching systems is studied.The matrix of the subsystems is expressed as a polytopic linear combination of vertex matrices.Based on Lyapunov stability theory,a family of non-negative scalars and a common positive definite matrix are found without requiring quadratic stabilization of subsystems,which makes Delta operator switching systems quadratic stabilizability under state-dependent switching laws.It is to propose the switching rules by using the obtained common positive definite matrix.An example is given to illustrate the effectiveness of the proposed method.
作者
李娟
肖民卿
LI Juan;XIAO Minqing(School of Mathematics and Information,Fujian Normal University,Fuzhou,Fujian 350007)
出处
《武夷学院学报》
2021年第3期11-15,共5页
Journal of Wuyi University
基金
福建省自然科学基金项目(2017J01567)。