期刊文献+

混合偏正态数据下中位数回归模型的参数估计 被引量:1

Estimation for Skew-Normal Mixture of Median Regression Models
原文传递
导出
摘要 有限混合回归模型是处理来自异质总体数据的重要工具.偏斜/不对称数据经常出现在金融、经济、社会科学、气候科学、环境科学、工程、生物医学等领域.根据偏正态数据的特征,均值易受极端值的影响,而中位数能代表“中等”水平,在偏态数据下比均值更具代表性.作者介绍了基于混合偏正态数据下的中位数回归模型,通过一种改进的EM算法进行参数估计,模拟研究和实例分析表明本文提出的方法是有效的. Finite mixture of regression models are one of the most important statistical data analysis tools to handle heterogeneous populations.Skewed/asymmetric data frequently appear in research fields such as finance,econom-mics,social sciences,climate science,environmental science,engineering,and biomedicine.According to the characteristics of skew-normal data,the mean is susceptible to the influence of extreme values,while the median represents the“medium”level,which is more representative than the mean under skewed data.In this paper,the authors introduce the median regression model based on mixture skew-normal data,and use a modified EM algorithm to estim-ate the parameters.The methodology is illustrated through numerical experiments and a real data example.
作者 曾鑫 吴刘仓 曹幸运 ZENG Xin;WU Liucang;CAO Xingyun(Faculty of Science,Kunming University of Science and Technology,Kunming 650093,China)
出处 《昆明理工大学学报(自然科学版)》 北大核心 2021年第3期167-174,共8页 Journal of Kunming University of Science and Technology(Natural Science)
基金 国家自然科学研究基金项目(11861041) 昆明理工大学学生课外学术科技创新基金项目(2020YB208)。
关键词 有限混合回归模型 异质总体 偏正态数据 中位数回归 EM算法 finite mixture of regression models heterogeneous populations skew-normal data median regression EM algorithm
  • 相关文献

参考文献3

二级参考文献27

  • 1Aitkin M. Modelling variance heterogeneity in normal regression using GLIM [J]. Journal of the Royal Statistical Society (Series C) (Applied Statistics), 1987, 36(3): 332-339.
  • 2Azzalini A. A class of distributions which includes the normal ones [J]. Scand. J. Statist., 1985, 12: 171-178.
  • 3Kotz S, Vicari D. Survey of developments in the theory of continuous skewed distributions [J]. International Journal of Statistics, 2005, 1: 225-261.
  • 4Xie F C, Wei B C, Lin J G. Homogeneity diagnostics for skew-normal nonlinear regression models [J]. Statistics and Probability Letters, 2009, 79(6): 821-827.
  • 5Cysneirosa F J A, Cordeirob G M, and Cysneiros A H M A. Corrected maximum likelihood esti- mators in heteroscedastic symmetric nonlinear models [J]. Journal of Statistical Computation and Simulation, 2010, 80(4): 451-461.
  • 6l Lachos V H, Bandyopadhyay D, Garay A M. Heteroscedastic nonlinear regression models based on scale mixtures of skew-normal distributions [J]. Statistics and Probability Letters, 2011, 81(8): 1208-1217.
  • 7Cook A D, Weisberg S. An Introduction to Regression Graphics [M]. New York: John WileySons, 1994.
  • 8Gold{eld S M, Quandt R E. A Markov Model {or Switching RegressionEJ3. Journal o{ Econometrics, 1973, (1).
  • 9McLachlan G, Peel D. Finite Mixture ModelsEM3. New York: Wiley, 2000.
  • 10Yao W X, Wei Y,Yu C. Robust Mixture Regression Models Using t-DistributionEJ3. Computational Statistics and Data A nalysis, 2014,(71).

共引文献18

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部