期刊文献+

智能化多无人集群作战体系动态适变机制设计方法 被引量:16

A design method of dynamic adaption mechanism for intelligent multi-unmanned-cluster combat system-of-systems
原文传递
导出
摘要 作战体系面临的战场环境与态势存在较强的不确定性和动态变化性,必须从体系能力生成机理要求出发,开展体系对抗条件下的动态适变机制设计,为作战体系结构形式与行为模式合理适变提供支撑.本文针对智能化多无人集群作战体系的典型特征,提出了基于模式切换规则的动态适变机制设计方法,并且构建了设计视图元模型.该方法根据体系的能力领域划分和兵力层次划分,分别在体系,集群,平台三个层次,设计任务流程适变,组织指控柔性和装备功能抗毁等三个方面的动态适变机制.最后以集群行动序列适应性生成机制为例阐释了方法的应用流程和作用. There are strong uncertainties and dynamic changes in the battlefield environment and the situation faced by the combat system-of-systems(SoS).It is necessary to carry out the design of dynamic adaptation mechanism under the condition of SoS confrontation from the requirements of system capability generation mechanism,so as to provide support for the reasonable adaptation of combat SoS structure formation and behavior pattern.According to the typical characteristics of intelligent multi-unmannedcluster CSoS,this paper proposes a design method of dynamic adaption mechanism based on pattern switching rules,and constructs the design view meta-model.According to the capability domain division and force level division of SoS,the dynamic adaption mechanism of task process adaptation,organizational command and control flexibility,and equipment function invulnerability is designed in three levels including SoS,cluster and platform.Finally,taking the adaptive generation mechanism of cluster course of action as an example,the application process and function of the method are explained.
作者 王维平 李小波 杨松 黄美根 王涛 段婷 WANG Weiping;LI Xiaobo;YANG Song;HUANG Meigen;WANG Tao;DUAN Ting(College of Systems Engineering,National University of Defense Technology,Changsha 410073,China)
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2021年第5期1096-1106,共11页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(62003359)。
关键词 作战体系设计 适变机制设计 弹性设计 适应性设计 无人集群 combat system-of-systems design adaption mechanism design flexibility design adaptive design unmanned cluster
分类号 E917 [军事]
  • 相关文献

参考文献8

二级参考文献73

  • 1李宪港,李强.典型智能博弈系统技术分析及指控系统智能化发展展望[J].智能科学与技术学报,2020,2(1):36-42. 被引量:19
  • 2王飞跃.平行系统方法与复杂系统的管理和控制[J].控制与决策,2004,19(5):485-489. 被引量:320
  • 3Ge J H, Kacprzynski G J, Roemer M J. Automated contingency management design for UAVs[R]. AIAA-2004- 6464, 2004.
  • 4Boskovic J D, Knoebel N, Moshtagh N, et al.Collaborarive mission planning & autonomous control technology (COMPACT) system employing swarms of UAVs[R]. AIAA-2009-5653, 2009.
  • 5Elston J, Frew E, Argrow B. Networked UAV command, control and communication[R]. AIAA-2006-6465, 2006.
  • 6Franke J L, Moffitt V Z, Housten D, et al. ICARUS: the construction of and lessons learned from a general-purpose autonomy system[R]. AIAA-2009-2066, 2009.
  • 7Redding J, Boskovic J D, Mehra R K. Heterogeneous cooperative control of multiple UAVs with collaborative assignment and reactive motion planning[R]. AIAA-2008 -6794, 2008.
  • 8Jameson S, Franke J, Szczerba R, et al. Collaborative autonomy for manned/unmanned teams[C]//American Hel icopter Society 61th Annual Forum Grapevine. 2005.
  • 9Mersten G S. Airborne battle management system & autonomous operations UAV autonomy[C]//The 20th Con ference on Digital Avionics Systems. 2001, 1:5A2/1-5A2/7.
  • 10Cambone S A, Krieg K, Pace P, et al. Unmanned aircraft systems (UAS) roadmap, 2005-2030 [R]. Washington, D. C. , USA: Office of the Secretary of Defense, 2005.

共引文献292

同被引文献184

引证文献16

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部