期刊文献+

VaR约束下带最低保障的DC型养老金的最优投资 被引量:4

Optimal investment of DC pension plan under VaR constraint with minimum guarantee
原文传递
导出
摘要 研究在最低保障和风险价值(value-at-risk,VaR)约束下确定缴费型(defined contribution,DC)养老金的最优投资策略问题.假设DC养老金采用了政府共享利润的计划,基金经理人以使得参与养老金计划员工的期望效用最大化为原则选择最优投资策略.利用凹化技巧以及鞅方法得到了最优财富过程和最优投资策略的显示解,并数值分析了VaR约束和利润共享计划对最优终值财富的影响.结果表明,VaR约束对经济不景气时的风险管理有严格的改进效用.同时利润共享计划也会对养老金经理起到一定的激励作用,从而增加良好的经济状态下的最优终值财富. This paper studies the optimal investment strategy of DC pension with VaR constraint and minimum guarantee.We assume that the terminal wealth is shared between the government and DC members.The manager aims to maximize the expected utility of the terminal payoff to DC members.We adopt a concavification technique and a Lagrange dual method to solve the problem and derive the representations of the optimal wealth process and trading strategies.We also carry out some numerical analysis to show the impacts of VaR constraint and the profit-sharing program on the optimal terminal wealth.Numerical results show that VaR constraint can provide an effective improvement in bad economic states.Furthermore,the profit-sharing program can increase the optimal terminal wealth in good economic states.
作者 蔡晶晶 董迎辉 吕文欣 吴桑 CAI Jingjing;DONG Yinghui;Lü Wenxin;WU Sang(Business School,Suzhou University of Science and Technology,Suzhou 215009,China;School of Mathematics,Suzhou University of Science and Technology,Suzhou 215009,China)
出处 《系统工程理论与实践》 EI CSSCI CSCD 北大核心 2021年第5期1252-1262,共11页 Systems Engineering-Theory & Practice
基金 国家自然科学基金(12071335) 江苏省自然基金优秀青年基金(BK20170064) 江苏省青蓝工程学术带头人资助项目 教育部人文社科项目(20YJAZH025)。
关键词 DC养老金 最低保障 拉格朗日对偶方法 凹化 风险价值 DC pension minimum guarantee Lagrange dual method concavification value at risk
  • 相关文献

参考文献4

二级参考文献26

  • 1Boulier J F, Huang S, Taillard G. Optimal management under stochastic interest rates: The case of a protected defined contribution pension fund[J]. Insurance: Mathematics and Economics, 2001, 28: 173-189.
  • 2Battocchio P, Menoncin F. Optimal pension management in a stochastic framework[J]. Insurance: Mathematics and Economics, 2004, 34: 79-95.
  • 3Cairns A J G, Blake D, Dowd K. Stochastic lifestyling: Optimal dynamic asset allocation for defined contribution pension plans[J]. Journal of Economic Dynamics and Control, 2006, 30: 843-877.
  • 4Deelstra G, Grasselli M, Koehl P F. Optimal investment strategies in the presence of a minimum guarantee[J]. Insurance: Mathematics and Economics, 2003, 33:189-207.
  • 5Gao J. Stochastic optimal control of DC pension funds[J]. Insurance: Mathematics and Economics, 2008, 42: 1159-1164.
  • 6Xiao J, Zhai H, Qin C. The constant elasticity of variance (CEV) model and the Legendre transform-dual solution for annuity contracts[J]. Insurance: Mathematics and Economics, 2007, 40:302-310.
  • 7Gao J. Optimal investment strategy for annuity contracts under the constant elasticity of variance (CEV) model[J]. Insurance: Mathematics and Economics, 2009, 45:9-18.
  • 8Vasicek O E. An equilibrium characterization of the term structure[J]. Journal of Finance Economics, 1977, 5: 177-188.
  • 9Cox J C, Ingersoll J, Ross S. A theory of the term structure of interest rates[J]. Econometrica, 1985, 53:385-408.
  • 10Duffle D, Kan R. A yield-factor model of interest rates[J]. Mathematical Finance, 1996(6): 379-406.

共引文献43

同被引文献24

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部