期刊文献+

基于无人机视觉的森林火情预测

Prediction of Forest Fire Based on Machine Vision of Unmanned Aerial Vehicle
下载PDF
导出
摘要 森林火灾危害严重,容易引起生命和财产损失,救援任务相对困难。然而,在森林火灾发生初期,准确的火情检测和火情识别,可以提前预警,降低生命和财产损失。利用无人机视觉监控火情图像,辅助救援,提高救援效率,保障救援中的人员安全。该文利用无人机实时获取森林状态图像,通过图像处理来自动识别火情。然而,单一特征难以准确分析和判断火情趋势。为了提高森林火灾识别的准确度,对森林火情的识别进行了研究,提出处理提取图像特征,并将图像颜色、尖角数以及烟雾综合特征结合的方法,能实现对火情区域内的有效辨别,并预测火情的蔓延趋势。实验结果表明,该方法对于火情判断的准确程度较高,提升了识别能力,为后续的救援任务提供有利参考。 Forest fire damage is serious, easy to cause loss of life and property, and the rescue mission is relatively difficult. However, in the early stage of forest fire, accurate fire detection and fire identification can lead to early warning and reduce the loss of life and property. The unmanned aerial vehicles are used for visual monitoring of fire images to assist rescue, improve rescue efficiency, and ensure the safety of rescue personnel. We use the unmanned aerial vehicles to acquire real-time forest image and automatically identify fire situation through image processing. However, a single feature is difficult to accurately analyze and judge the fire trend. In order to improve the accuracy of forest fire identification, we study the recognition of forest fire and put forward the method of processing and extracting image features, combining image color, sharp angle number and comprehensive characteristics of smoke, which can realize the effective identification of the fire area and predict the spread trend of fire. Experiment shows that the proposed method has high accuracy for fire judgment, enhances the reliability of forest fire detection system, and provides convenience for real-time rescue.
作者 王君 蒲磊 黄宁 陈楷升 梁薇薇 杨振威 WANG Jun;PU Lei;HUANG Ning;CHEN Kai-sheng;LIANG Wei-wei;YANG Zhen-wei(School of Electrical and Computer Engineering,Nanfang College of Sun Yat-sen University,Guangzhou 510970,China;School of Automation,Chongqing University of Posts and telecommunications,Chongqing 400065,China)
出处 《计算机技术与发展》 2021年第6期204-208,共5页 Computer Technology and Development
基金 广东省“千名博士(后)”人才引进专项(2020GDASYL-20200103037)。
关键词 森林防火预警 火情救援 多特征融合 火情预测 无人机视觉 forest fire prevention early warning fire rescue multi-feature fusion prediction of fire UAV vision
  • 相关文献

参考文献6

二级参考文献55

  • 1Yang Ming-Hsuan, Kriegman D J. Detecting faces in images : a survey [ J ]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence,2002,24( 1 ) :34-58.
  • 2Leung T K, Burl M C, Perona P. Finding Faces in ClutteredScenes Using Random Labeled Graph Matching [C]//Proc. of Fifth IEEE Int'l Conf. on Com- puter Vision. [ s. l. ]:[ s. n. ] ,1995:637-644.
  • 3He Xiaofei, Yan Shuicheng. Face recognition u- sing Laplacian faces [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence ,2005, 27(3 ) :328-340.
  • 4Rowley H A, Bauja S, Kanade T. Neural network- based face detection [ J ]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1998, 20( 1 ) :23-38.
  • 5Garcia C, Tzifitas G. Face detection using quan- tized skin color regions merging and wavelet packet analysis[ J ]. IEEE Transactions on Multi- media, 1999,1 (3) :264-277.
  • 6Turk M, Pentland A. Eigenfaces for recognition [ J ]. Journal of cognitive neuroscience, 1991,3 ( 1 ) :71-86.
  • 7Moghaddara B, Pentland A. Probabilistic visual learning for object representation [ J ]. IEEE Transactions on pattern analy- sis and machine intelligence, 1997,19 ( 7 ) : 696 -710.
  • 8Kherchaoui S, Houacine A. Face detection based on a model of the skin color with constraints and template matching [ C ]// 2010 International Conference on Machine and Web Intelli- gence (ICMWI). [s. l. ] :[s. n. ] ,2010:469-472.
  • 9Rein-Lien H,Abdel-Mottaleb M. Face detection in color ima- ges[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24 ( 5 ) :696-706.
  • 10Guo Jingming,Lin Chenchi. Complexity Reduced Face Detec- tion Using Probability-based Face Mask Prefiltering and Pixel -Based Hierarchical -feature Adaboosting [ J ]. IEEE Signal Processing Letters ,2011,18 ( 8 ) :447-450.

共引文献124

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部