期刊文献+

40~50 GHz宽带螺旋线行波管高频系统研究 被引量:4

Research on High Frequency Structure of 40~50 GHz Broadband Helix Traveling Wave Tubes
下载PDF
导出
摘要 针对40 GHz以上电磁兼容试验需求,开展了40~50 GHz宽带螺旋线行波管研制。本文主要对该行波管的高频系统进行技术研究。通过尺寸共度效应理论分析和螺旋线表面镀膜降低高频衰减技术,研究了高频率行波管的色散特性、耦合阻抗、高频衰减、横向传播常数等高频特性的变化规律。采用无翼片加载慢波结构、螺旋线双渐变技术和衰减器分布优化设计方法,提高了宽带输出功率和电子效率,同时抑制了返波振荡。研制出的行波管在40~50 GHz范围内,饱和功率达到110 W,能够满足宽带毫米波电磁兼容试验的需求。 To meet the electromagnetic compatibility(EMC)test requirements over 40 GHz,40~50 GHz broadband helix TWT is developed at BVERI.The high frequency structure of the TWT is mainly studied.Based on wavelength-size-matching effect of linear-beam tube and the helix surface-coating to reduce high frequency attenuation,the dispersion,coupling impedance,high frequency attenuation and radical propagation constant of the slow wave structure are analyzed and simulated.The vaneless slow wave structure,helix double-tapering method and optimal design of attenuators distribution are adopted to improve the broadband output power and electronic efficiency,and meanwhile to suppress backward wave oscillation.The developed TWT has a saturated output power of 110 W in the frequency range of 40~50 GHz and can meet the needs of broadband millimeter wave EMC tests.
作者 郑丽 郝保良 李紫琳 李伟 王娟 孟晓君 ZHENG Li;HAO Bao-liang;LI Zi-lin;LI Wei;WANG Juan;MENG Xiao-jun(Beijing Vacuum Electronics Research Institute,Beijing 100015,China)
出处 《真空电子技术》 2021年第3期76-80,共5页 Vacuum Electronics
关键词 毫米波 宽带行波管 螺旋线慢波系统 Millimeter wave Broadband TWT Helix slow-wave structure
  • 相关文献

参考文献2

二级参考文献19

  • 1肖刘,苏小保,刘濮鲲.螺旋带色散特性和耦合阻抗的精确计算[J].电子与信息学报,2007,29(3):751-755. 被引量:8
  • 2Chong C K, Layman D, and Le Borgne R H, et al.. Development of high-power Ka and Q dual-band and communications or radar dual-function helix-TWT [J]. IEEE Transactions on Electron Devices, 2009, 56(5): 913-918.
  • 3Dialetis D, Chernin D, and Antonsen T M Jr, et al.. Accurate representation of attenuation in Helix TWT Simulation Codes [J]. IEEE Transactions on Electron Devices, 2009, 56(5): 935-944.
  • 4Datta S K, Kumar L, and Basu B N. A simple and accurate analysis of conductivity loss in millimeter-wave helical slow-wave structures[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2009, 30(4): 381-392.
  • 5Duan Zhao-yun, Gong Yu-bin, Wang V(cn-xiang, and Wei Yan-yu. Investigation into the effect of dielectric loss on RF characteristics of helical SWS[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2008, 29(1): 23-34.
  • 6Gilmour A S, Gillette M R, and Chen J T. Theoretical and experimental TWT helix loss determination[J]. IEEE Transactions on Electron Devices, 1979, 26(10): 1581-1588.
  • 7Sensiper S. Electromagnetic wave propagation on helical conductors [D]. [Ph.D. dissertation], Dept. of Electrical Engineering, MIT, May 1951.
  • 8Ghosh S, Jain P K, and Basu B N. Rigorous tape analysis of inhomogeneously-loaded helical slow wave structures[J]. IEEE Transactions on Electron Devices, 1997, 44(7): 1158-1168.
  • 9Cheinin D, Antonsen T M Jr, and Levush B. Exact treatment of the dispersion and beam interaction impedance of a thin tape helix surrounded by a radially stratified dielectric[J]. IEEE Transactions on Electron Devices, 1999, 46(7): 1472-1482.
  • 10Naidu V B, Datta S K, and Ramana P R, et al.. Three-dimensional electromagnetic analysis of attenuator-coated helix support rods of a traveling-wave tube[J]. IEEE Transactions on Electron Devices, 2009, 56(5): 945-950.

共引文献11

同被引文献12

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部