期刊文献+

具有长方系数矩阵的微分代数方程组数值解的渐近稳定性

Asymptotic stability of linear multistep methods and Runge-Kutta methods for homogeneous differential-algebraic equations with rectangular coefficients
下载PDF
导出
摘要 研究了具有长方系数矩阵的微分代数方程组的数组稳定性,利用克罗尼克标准型将原系统等价转化,获得了线性多步法和龙格-库塔法求解系统时的渐近稳定性结果. This paper is concerned with the asymptotic stability of numerical methods applied to linear differential-algebraic equations.The coefficient matrices of the system are constant rectangular matrices.We consider linear multistep methods and Runge-Kutta methods applied to the system.The stability results are established under Kronecker canonical form of the original system.
作者 孙乐平 SUN Leping(Mathematics and Science College,Shanghai Normal University,Shanghai 200234,China)
出处 《上海师范大学学报(自然科学版)》 2021年第3期280-290,共11页 Journal of Shanghai Normal University(Natural Sciences)
基金 The Scientific Computing Key Laboratory of Shanghai Normal University and the Shanghai Natural Science Foundation(15ZR1431200)。
关键词 长方系数矩阵 微分代数方程 渐近稳定 矩阵束 克罗尼克标准型 rectangular coefficient matrix differential-algebraic equations asymptotic stability pencil Kronecker canonical form
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部