摘要
针对一类由函数y=f(x)所确定的递推数列x_(n+1)=f(x_(n)),n=0,1,2,…为研究对象,假设f(x)具有单调性,在没有通项公式的情况下,给出了数列{x_(n)}敛散性的判别方法,并总结了判别方法的一般规律,最后给出具体应用以验证方法的有效性和可行性。
This article takes a type of recursive sequence x_(n+1)=f(x_(n)),n=0,1,2,…,determined by a function y=f(x)as the research object.Assuming that f(x)is monotonic,and in the absence of a general term formula,the method for judging the convergence and divergence of the sequence of{x_(n)} is proposed,and the general law of the judgment method is summarized.Finally,specific applications are given to verify the effectiveness and feasibility of the method.
作者
张友梅
吴邦昆
Zhang Youmei;Wu Bangkun(Department of Education,Hefei Vocational and Technical College,Hefei 238000,China)
出处
《大理大学学报》
2021年第6期1-4,共4页
Journal of Dali University
基金
安徽省级质量工程项目(2019jyxm0838)。
关键词
单调函数
递推数列
收敛性
判别
monotonic function
recursive sequence
convergence
judge