期刊文献+

基于Brent算法的轴偏置虎克铰型Hexapod平台位置反解 被引量:1

Inverse kinematics of Hexapod platform with axis offset Hooke joint based on Brent’s method
下载PDF
导出
摘要 针对Newton-Raphson算法求解轴偏置虎克铰型并联六自由度Hexapod平台位置反解时高精度计算会降低平台响应速度的问题,提出了一种新的基于Brent算法的位置反解求解方法。首先,根据平台几何特性和轴偏置虎克铰结构运动特性,建立了基于空间圆辅助模型的运动学模型;接着,提出了基于空间圆距离求解方法的位置反解算法,并针对丝杠螺母副产生的衍生运动,提出了补偿方案;然后,介绍了Brent求根算法,并将Brent算法应用于位置反解算法;最后,通过实验验证了衍生运动误差补偿方案的必要性,同时与采用Newton-Raphson算法的位置反解进行了对比,并测试了该算法控制下的Hexapod平台的响应速度和精度。实验结果表明:在保证平台重复精度低于10μm和5″的工作需求下,基于Brent算法的位置反解与Newton-Raphson算法相比,综合响应速度提高了约0.5 s。因此,基于Brent算法的位置反解求解方法相对改善了Hexapod平台的响应速度。 When the Newton-Raphson algorithm is used to solve the inverse kinematics of a 6-degree-offreedom parallel Hexapod platform with axis offset Hooke joints,the high-precision calculation requirements can decrease the response speed of the platform.To solve this issue,a new method based on Brent’s method is proposed in this study.First,the kinematics model based on the space circle auxiliary model is established by considering the geometric characteristics of the platform and motion characteristics of the axis offset Hooke joint structure.Subsequently,an inverse kinematics algorithm based on the space circle distance solution method is proposed,along with a compensation scheme for the derivative motion of the screw–nut pair.Subsequently,Brent’s method to determine roots is introduced and applied to the inverse kinematics algorithm.Finally,the experiment is used to verify the necessity of the derivative motion error compensation scheme,compare it with the inverse kinematics based on the Newton–Raphson algorithm,and test the response speed and accuracy of the Hexapod platform controlled by the proposed algorithm.In the experimental results,a comparison of the inverse kinematics based on Brent’s method with those based on the Newton-Raphson algorithm indicates that the comprehensive response rate increases by approximately 0.5 s under the operating requirements of repeatability of less than 10μm and 5".Therefore,the inverse kinematics method based on Brent’s method improves the response speed of the Hexapod platform.
作者 孙佳霖 刘曰涛 杨梦超 韩振 付连壮 SUN Jia-lin;LIU Yue-tao;YANG Meng-chao;HAN Zhen;FU Lian-zhuang(School of Mechanical Engineering,Shandong University of Technology,Zibo 255049,China)
出处 《光学精密工程》 EI CAS CSCD 北大核心 2021年第4期782-792,共11页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.51805299) 山东省重点研发计划资助项目(No.2019GGX104081) 山东省重点研发计划资助项目(No.2019GGX104033)。
关键词 Hexapod平台 响应 轴偏置虎克铰 位置反解 Brent算法 Hexapod platform response axis offset Hooke joint inverse displacement Brent’s method
  • 相关文献

参考文献9

二级参考文献59

  • 1李伟鹏,黄海,黄舟.基于Stewart平台的星上微振动主动隔离/抑制[J].机械科学与技术,2015,34(4):629-635. 被引量:9
  • 2刘文涛,唐德威,王知行.Stewart平台机构标定的鸡尾酒法[J].机械工程学报,2004,40(12):48-52. 被引量:15
  • 3Dasgupta B, Mruthyunjaya T S. The Stewart platform manipulator: A review [J]. Mech Mach Theory, 2000,35(1):15-44.
  • 4Dasgupta B, Mruthyunjaya T S. Close-form dynamic equations of the general Stewart platform through the Newton-Euler approach [J]. Mech Mach Theory, 1998,33(7):993 - 1012.
  • 5Khalil W, Guegan S. Inverse and direct dynamic modeling of Gough-Stewart robots [J]. IEEE Transactions on Robotics,2004, 20(4):754-762.
  • 6Geng Z, Haynes L S, Lee D. On the dynamic model and kinematics analysis of a class of Stewart platforms [J].Robotics and Autonomous Systems, 1992, 9:237 - 254.
  • 7Schiehlen W O. Computer generation of equations of motion [A]. NATO ASI Series, Computer Aided Analysis and Optimization of Mechanical System Dynamics [C].Heideberg, Berlin: Springer-Verlag, 1984.
  • 8ATAD E. Atlast-9.2m: a large-aperture deployable space telescope [J]. Proc.of SPIE, 2010, 7731, 77312M1-10.
  • 9CROCKER J H. Fixing the hubble space telescope [J]. Space Astronomical Telescopes and Instruments, 1991, 1494: 2-8.
  • 10ALLENJ, BRONOWICKI, JOHN W. A family of full spacecraft-to-payload isolators [J]. Technology Review Journal, 2005: 21-41.

共引文献64

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部