期刊文献+

扩展高斯图像聚类的缺失点云配准 被引量:8

Registration of losing point cloud based on clustering extended Gaussian image
下载PDF
导出
摘要 针对局部缺失点云配准时精度不高和收敛过慢等问题,提出了一种基于扩展高斯图像聚类的快速点云配准算法。通过将点云映射到扩展高斯图像中进行聚类后逆映射实际点云获取待配准的子点云,进而规避局部缺失带来的干扰;此外,为提高计算效率和配准精度,采用距离-曲率描述子查询对应点对进行奇异值分解进行粗配准,并结合迭代最近点精配准算法实现点云配准过程。实验结果表明,该算法对于局部缺失点云具有较高精度(均方误差相对于结合ICP的传统算子FPFH降低了近17.9%),且相比其它算法有一定的速度优势(耗时相对于结合ICP的SHOT算子加速了近32.5%)。该算法可以有效的运用在局部缺失点云的位姿识别中,从而可以被广泛地应用于工业现场中三维物体的快速识别定位。 With the aim of tackling the registration problems in terms of low matching accuracy and low convergence speed in locally losing point clouds,a fast point cloud registration algorithm based on a clustering extended Gaussian image is proposed herein.To avoid the interference due to local loss,the point cloud is mapped to the extended Gaussian image for clustering and inversely mapped back to the actual point cloud.Moreover,to improve the efficiency of computation and the accuracy of registration,the process of point cloud registration is realized by using the distance–curvature descriptor to obtain the corresponding point pairs and the iterative closest point(ICP)algorithm.The experimental results reveal that this algorithm displays high accuracy in the case of locally losing point clouds(resulting in a mean squared error(MSE)value lowered by 17.9%for the fast point feature histogram(FPFH)descriptor combined with the ICP algorithm).Moreover,it is faster than other algorithms(resulting in a decrease in running time by 32.5%for the signature of histograms of orientation(SHOT)descriptor combined with the ICP algorithm).Therefore,it can be widely applied for fast recognition and location of three-dimensional objects in the industrial field.
作者 吴庆华 蔡琼捷思 黎志昂 刘嘉程 WU Qing-hua;CAI Qiong-jie-si;LI Zhi-ang;LIU Jia-cheng(Hubei Key Laboratory of Manufacture Quality Engineering,Wuhan 430064,China;College of Mechanical Engineering,Hubei University of Technology,Wuhan 430064,China)
出处 《光学精密工程》 EI CAS CSCD 北大核心 2021年第5期1199-1206,共8页 Optics and Precision Engineering
基金 国家自然科学基金资助项目(No.51275158)。
关键词 机器视觉 点云配准 扩展高斯图像 距离-曲率描述子 缺失点云 machine vision point cloud registration extended Gaussian image distance-curvature descriptor losing point cloud
  • 相关文献

参考文献5

二级参考文献51

  • 1张宏伟,赖百炼.三维激光扫描技术特点及其应用前景[J].测绘通报,2012(S1):320-322. 被引量:57
  • 2柯映林,范树迁.基于点云的边界特征直接提取技术[J].机械工程学报,2004,40(9):116-120. 被引量:55
  • 3钱锦锋,陈志杨,张三元,叶修梓.点云数据压缩中的边界特征检测[J].中国图象图形学报(A辑),2005,10(2):164-169. 被引量:39
  • 4田庆国,葛宝臻,杜朴,郁道银,吕且妮.基于激光三维扫描的人体特征尺寸测量[J].光学精密工程,2007,15(1):84-88. 被引量:51
  • 5Williams J A,Bennamoun M,Latham S.Multiple view 3-D registration:a review and a new technique[A].Proceedings of the IEEE International Conferences on Systems,Man and Cybernetics[C].Tokyo,1999,3:497-502.
  • 6Ahn S J,Rauh W.Circular coded target for automation of optical 3D-measurement and camerà calibration[J].International Journal of Pattern Recognition and Artificial Intelligence,2001,15(6):905-919.
  • 7Ahn S J,Schultes M.A new circular coded target for the automation of photogrammetric 3D surface measurements[A].Proc 4th Conf Optical 3-D Measurement Techniques[C].Zurich,Switzerland,1997.225-234.
  • 8Besl P J,Mckay N D.A method for registration of 3-D shapes[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1992,14(2):239-256.
  • 9Simon D A.Fast and Accurate Shape Based Registration[D].Pittsburgh,Pennsylvania:Carnegie Mellon University,1996.
  • 10DUNWZ, HUNG, HONGL X, etal: The re- search of optical 3D measuring precision influencing factor in reverse engineering [J]. Applied Mechan- ics and Materials, 2010, 33: 157-162.

共引文献168

同被引文献42

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部