期刊文献+

一类分数阶Langevin方程block⁃by⁃block算法的数值分析 被引量:2

Numerical Analysis of a Class of Fractional Langevin Equations With the Block⁃by⁃Block Method
下载PDF
导出
摘要 分数阶Langevin方程有重要的科学意义和工程应用价值,基于经典block⁃by⁃block算法,求解了一类含有Caputo导数的分数阶Langevin方程的数值解.Block⁃by⁃block算法通过引入二次Lagrange基函数插值,构造出逐块收敛的非线性方程组,通过在每一块耦合求得分数阶Langevin方程的数值解.在0<α<1条件下,应用随机Taylor展开证明block⁃by⁃block算法是3+α阶收敛的,数值试验表明在不同α和时间步长h取值下,block⁃by⁃block算法具有稳定性和收敛性,克服了现有方法求解分数阶Langevin方程速度慢精度低的缺点,表明block⁃by⁃block算法求解分数阶Langevin方程是高效的. The fractional Langevin equation is of great scientific significance and engineering application value.Based on the classical block⁃by⁃block method,the numerical solution of a class of fractional Langevin equations with Caputo derivatives was obtained.Through introduction of the quadratic Lagrange basis function interpola⁃tion,the block⁃by⁃block convergent nonlinear equations were constructed,and the numerical solution of the Langevin equation was obtained by coupling in each block.Under the condition of 0<α<1,the stochastic Taylor expansion was used to prove that the block⁃by⁃block method is(3+α)⁃order convergent.Numerical ex⁃periments show that,the block⁃by⁃block method is stable and convergent under different values ofαand time step h,and overcomes the existing methods’disadvantages of slow speed and poor accuracy for solving frac⁃tional Langevin equations.
作者 张嫚 曹艳华 杨晓忠 ZHANG Man;CAO Yanhua;YANG Xiaozhong(Institute of Information and Computation,School of Mathematics and Physics,North China Electric Power University,Beijing 102206,P.R.China)
出处 《应用数学和力学》 CSCD 北大核心 2021年第6期562-574,共13页 Applied Mathematics and Mechanics
基金 国家科技重大专项子课题(2017ZX07101001⁃01)。
关键词 分数阶Langevin方程 block⁃by⁃block算法 稳定性 收敛性 数值试验 fractional Langevin equation block⁃by⁃block method stability convergence numerical experi⁃ment
  • 相关文献

参考文献4

二级参考文献38

  • 1常福宣,陈进,黄薇.反常扩散与分数阶对流-扩散方程[J].物理学报,2005,54(3):1113-1117. 被引量:26
  • 2Podlubny I. Fractional Differential Equations[ M]. San Diego: Academic Press, 1999.
  • 3Gorenflo R, Luchko Y, Mainardi F. Wright function as scale-invariant solutions of the diffusion-wave equation[J]. J Comp Appl Math, 2000, 118(1/2) : 175-191.
  • 4Mainardi F, Paradisi P, Gorenflo R. Probability distributions generated by fractional diffusion equations[C]//Kertesz J, Kondor I. Econophysics: an Emerging Science. Dordrecht: Kluwer Academic Publishers, 1998.
  • 5Mainardi F, Luchko Y, Pagnini G. The fundamental solution of the space-time fractional diffusion equation[ J ]. Fractional Calculus and Applied Analysis, 2001, 4(2) : 153-192.
  • 6Wyss W. The fractional diffusion equation[ J]. J Math Phys, 1986, 27( 11 ) :2782-2785.
  • 7Chen J, Liu F, Anh V. Analytical solution for the time-fractional telegraph equation by the method of separating variables [J]. J Math Anal Appl, 2008, 338 (2) : 1354-1377.
  • 8Agrawal O P. Solution for a fractional diffusion-wave equation defined in a bounded domain [ J ]. Nonlinear Dynamics, 2002, 29 ( 1/4 ) : 145-155.
  • 9Gorenflo R, Mainardi F. Fractional calculus: integral and differential equations of fractional order[ C]//Carpinteri A, Mainardi F. Fractals and Fractional Calculus in Continuum Mechanics. New York: Springer, 1997 : 223-275.
  • 10Oldham K B, Spanier J. The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order[ M]. New York: Academic Press, 1974.

共引文献25

同被引文献3

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部