期刊文献+

涡轴发动机动力涡轮转速传感器容错控制方法研究 被引量:2

Research on fault tolerant control method for power turbine speed sensor of turboshaft engine
下载PDF
导出
摘要 为了提高涡轴发动机的可靠性,在动力涡轮转速传感器发生故障时,保证发动机串级主回路与预测抗扰控制回路的正常运行,提出了涡轴发动机动力涡轮转速传感器容错控制方法研究。采用动态系数法建立了涡轴发动机简化实时模型,利用卡尔曼算法进行了发动机退化参数的估计,建立了涡轴发动机机载自适应模型,同时对动力涡轮转速信号进行了故障诊断及信号重构,实现了对预测抗扰控制回路及发动机串级控制回路的容错设计,并进行了数字仿真验证。结果表明,所设计的容错控制方法可以在动力涡轮转速传感器信号发生故障时保证发动机的正常工作。 In order to improve the reliability of turboshaft engine and ensure the normal operation of cascade main circuit and predictive disturbance rejection control circuit in case of power turbine speed sensor failure,a fault-tolerant control method for power turbine speed sensor of turboshaft engine is proposed.The simplified real-time model of turboshaft engine is established by using dynamic coefficient method.The degradation parameters of turboshaft engine are estimated by using Kalman algorithm.The airborne adaptive model of turboshaft engine is established.At the same time,the fault diagnosis and signal reconstruction of power turbine speed signal are carried out,and the fault-tolerant design of predictive disturbance rejection control loop and engine cascade control loop is realized Word simulation verification.The results show that the fault-tolerant control method can ensure the normal operation of the engine when the signal of the power turbine speed sensor fails.
作者 陈昊洋 杜紫岩 CHEN Haoyang;DU Ziyan(China Power Machinery Research Institute of AVIC,Zhuzhou 412002,China;Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China)
出处 《电气应用》 2021年第6期99-105,共7页 Electrotechnical Application
关键词 涡轴发动机 动力涡轮转速 容错控制 机载自适应模型 turboshaft engine power turbine speed fault tolerant control airborne adaptive model
  • 相关文献

参考文献1

二级参考文献4

  • 1Vapnik V. The Nature of Statistical Learning[M]. NewYork:Springer, 1998.
  • 2Smola A. Regression Estimation with Support Vector Learning Machines[D]. Master's Thesis, Technische Universitat Mu nchen, Mu nchen, Germany, 1996.
  • 3Vapnik V,Steven E. Golowich, Alex Smola. Support Vector Method for Function Approximation,Regression Estimation,and Signal Processing[A]. In M. Mozer,Editors, etc. Advances in NIPS 9 [C]. PP: 281 - 287, Cambridge, MA: MIT Press, 1997.
  • 4Gretton A, Doucet A, Herbrich R, Rayner P, Scholkopf B.Support Vector Regression for Black-box System Identification [A]. In 11th IEEE Workshop on Statistical Signal Pro cessing [C]. PP : 341 - 344, IEEE Signal Processing Society,Piscataway,NY 2001.

共引文献13

同被引文献7

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部